The cross number of minimal zero-sum sequences in finite abelian groups

被引:2
|
作者
Kim, Bumsoo [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Finite abelian group; Cross number; Minimal zero-sum sequence; Zero-sum free sequence; INVARIANTS;
D O I
10.1016/j.jnt.2015.04.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the maximal cross number K(G) of a minimal zero-sum sequence and the maximal cross number k(G) of a zero-sum free sequence over a finite abelian group G, defined by Krause and Zahlten.. In the first part of this paper, we extend a previous result by X. He to prove that the value of k(G) conjectured by Krause and Zahlten holds for G circle plus C-pa circle plus C-pb when it holds for G, provided that p and the exponent of G are related in a specific sense. In the second part, we describe a new method for proving that the conjectured value of K(G) holds for abelian groups of the form H-p circle plus C-qm (where H-p is any finite abelian p-group) and C-p circle plus C-q circle plus C-r for any distinct primes p, q, r. We also give a structural result on the minimal zero-sum sequences that achieve this value. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:99 / 122
页数:24
相关论文
共 50 条
  • [1] MINIMAL ZERO-SUM SEQUENCES IN FINITE CYCLIC GROUPS
    Zhuang, Jujuan
    Yuan, Pingzhi
    TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (03): : 1007 - 1015
  • [2] ON TINY ZERO-SUM SEQUENCES OVER FINITE ABELIAN GROUPS
    Gao, Weidong
    Hui, Wanzhen
    Li, Xue
    Qin, Xiaoer
    Yin, Qiuyu
    COLLOQUIUM MATHEMATICUM, 2022, 168 (02) : 311 - 324
  • [3] A RECIPROCITY ON FINITE ABELIAN GROUPS INVOLVING ZERO-SUM SEQUENCES
    Han, Dongchun
    Zhang, Hanbin
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (02) : 1077 - 1095
  • [4] On the index of minimal zero-sum sequences over finite cyclic groups
    Yuan, Pingzhi
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (08) : 1545 - 1551
  • [5] SUBSEQUENCE SUMS OF ZERO-SUM FREE SEQUENCES OVER FINITE ABELIAN GROUPS
    Qu, Yongke
    Xia, Xingwu
    Xue, Lin
    Zhong, Qinghai
    COLLOQUIUM MATHEMATICUM, 2015, 140 (01) : 119 - 127
  • [6] Two zero-sum invariants on finite abelian groups
    Fan, Yushuang
    Gao, Weidong
    Wang, Linlin
    Zhong, Qinghai
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (08) : 1331 - 1337
  • [7] Zero-sum problems in finite abelian groups: A survey
    Gao, Weidong
    Geroldinger, Alfred
    EXPOSITIONES MATHEMATICAE, 2006, 24 (04) : 337 - 369
  • [8] Representation of zero-sum invariants by sets of zero-sum sequences over a finite abelian group
    Weidong Gao
    Siao Hong
    Wanzhen Hui
    Xue Li
    Qiuyu Yin
    Pingping Zhao
    Periodica Mathematica Hungarica, 2022, 85 : 52 - 71
  • [9] Representation of zero-sum invariants by sets of zero-sum sequences over a finite abelian group
    Gao, Weidong
    Hong, Siao
    Hui, Wanzhen
    Li, Xue
    Yin, Qiuyu
    Zhao, Pingping
    PERIODICA MATHEMATICA HUNGARICA, 2022, 85 (01) : 52 - 71
  • [10] MINIMAL ZERO-SUM SEQUENCES OF LENGTH FIVE OVER FINITE CYCLIC GROUPS
    Peng, Jiangtao
    Li, Yuanlin
    ARS COMBINATORIA, 2013, 112 : 373 - 384