Gorenstein spherical Fano varieties

被引:14
|
作者
Gagliardi, Giuliano [1 ]
Hofscheier, Johannes [1 ]
机构
[1] Univ Tubingen, Fachbereich Math, D-72076 Tubingen, Germany
关键词
Spherical varieties; Fano varieties; Lattice polytopes;
D O I
10.1007/s10711-015-0047-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a combinatorial description of Gorenstein spherical Fano varieties in terms of certain polytopes, generalizing the combinatorial description of Gorenstein toric Fano varieties by reflexive polytopes and its extension to Gorenstein horospherical Fano varieties due to Pasquier. Using this description, we show that the rank of the Picard group of an arbitrary -dimensional -factorial Gorenstein spherical Fano variety is bounded by . This paper also contains an overview of the description of the natural representative of the anticanonical divisor class of a spherical variety due to Brion.
引用
收藏
页码:111 / 133
页数:23
相关论文
共 50 条
  • [1] Gorenstein spherical Fano varieties
    Giuliano Gagliardi
    Johannes Hofscheier
    Geometriae Dedicata, 2015, 178 : 111 - 133
  • [2] Gorenstein toric Fano varieties
    Nill, B
    MANUSCRIPTA MATHEMATICA, 2005, 116 (02) : 183 - 210
  • [3] Gorenstein toric Fano varieties
    Benjamin Nill
    manuscripta mathematica, 2005, 116 : 183 - 210
  • [4] Classification of arithmetically Gorenstein divisors on some Fano varieties
    Gianni Ciolli
    Alberto Dolcetti
    Annali di Matematica Pura ed Applicata, 2009, 188 : 611 - 617
  • [5] Classification of arithmetically Gorenstein divisors on some Fano varieties
    Ciolli, Gianni
    Dolcetti, Alberto
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (04) : 611 - 617
  • [6] K-STABILITY OF FANO SPHERICAL VARIETIES
    Delcroix, Thibaut
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (03): : 615 - 662
  • [7] Rigid Gorenstein toric Fano varieties arising from directed graphs
    Kara, Selvi
    Portakal, Irem
    Tsuchiya, Akiyoshi
    COLLECTANEA MATHEMATICA, 2023, 74 (02) : 333 - 351
  • [8] Rigid Gorenstein toric Fano varieties arising from directed graphs
    Selvi Kara
    Irem Portakal
    Akiyoshi Tsuchiya
    Collectanea Mathematica, 2023, 74 : 333 - 351
  • [9] Q-FACTORIAL GORENSTEIN TORIC FANO VARIETIES WITH LARGE PICARD NUMBER
    Nill, Benjamin
    Obro, Mikkel
    TOHOKU MATHEMATICAL JOURNAL, 2010, 62 (01) : 1 - 15
  • [10] Asymptotic Chow Semistability Implies Ding Polystability for Gorenstein Toric Fano Varieties
    Yotsutani, Naoto
    MATHEMATICS, 2023, 11 (19)