Dynamical mean-field theory calculation with the dynamical density-matrix renormalization group

被引:11
|
作者
Nishimoto, S [1 ]
Gebhard, F
Jeckelmann, E
机构
[1] Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany
[2] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[3] Univ Mainz, Inst Phys, KOMET 337, D-55099 Mainz, Germany
关键词
Hubbard model; infinite dimensions; metal-insulator transitions;
D O I
10.1016/j.physb.2006.01.104
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study the Hubbard model at half band-filling on a Bethe lattice with infinite coordination number at zero temperature. We use the dynamical mean-field theory (DMFT) mapping to a single-impurity Anderson model with a bath whose properties have to be determined self-consistently. For a controlled and systematic implementation of the self-consistency scheme we use the fixed-energy approach to the DMFT. Using the dynamical density matrix renormalization group method (DDMRG) we calculate the density of states (DOS) with a resolution ranging from 3% of the bare bandwidth W = 4t at high energies to 0.01 % for the quasi-particle peak. The DDMRG resolution and accuracy for the DOS is superior to those obtained with other numerical methods in previous DMFT investigations. We find that the critical couplings are Uc,1/t = 4.45 +/- 0.05 and Uc,2/t = 6.1 +/- 0. 1. Our calculation indicate the existence of two metallic solutions below U = Uc,1. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:283 / 285
页数:3
相关论文
共 50 条
  • [1] Dynamical density-matrix renormalization group
    Jeckelmann, Eric
    Benthien, Holger
    [J]. COMPUTATIONAL MANY-PARTICLE PHYSICS, 2008, 739 : 621 - +
  • [2] Dynamical density-matrix renormalization-group method
    Jeckelmann, E
    [J]. PHYSICAL REVIEW B, 2002, 66 (04):
  • [3] Density-matrix mean-field theory
    Zhang, Junyi
    Cheng, Zhengqian
    [J]. SCIPOST PHYSICS, 2024, 17 (02):
  • [4] Dynamical mean-field theory, density-matrix embedding theory, and rotationally invariant slave bosons: A unified perspective
    Ayral, Thomas
    Lee, Tsung-Han
    Kotliar, Gabriel
    [J]. PHYSICAL REVIEW B, 2017, 96 (23)
  • [5] Dynamical mean field theory with the density matrix renormalization group -: art. no. 246403
    García, DJ
    Hallberg, K
    Rozenberg, MJ
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (24)
  • [6] Mean-field dynamical density functional theory
    Dzubiella, J
    Likos, CN
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (06) : L147 - L154
  • [7] Density Matrix Embedding: A Simple Alternative to Dynamical Mean-Field Theory
    Knizia, Gerald
    Chan, Garnet Kin-Lic
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (18)
  • [8] Density-matrix renormalization group for static and dynamical properties of low dimensional systems
    Hallberg, KA
    [J]. REVISTA MEXICANA DE FISICA, 1998, 44 : 10 - 14
  • [9] Dynamical mean-field theory and numerical renormalization group study of superconductivity in the attractive Hubbard model
    Bauer, J.
    Hewson, A. C.
    Dupuis, N.
    [J]. PHYSICAL REVIEW B, 2009, 79 (21)
  • [10] Dynamical mean-field theory for perovskites
    Lombardo, P
    Avignon, M
    Schmalian, J
    Bennemann, KH
    [J]. PHYSICAL REVIEW B, 1996, 54 (08): : 5317 - 5325