SPS technique for ionizing radiation source fabrication based on dense cesium-containing core

被引:29
|
作者
Papynov, E. K. [1 ,2 ]
Shichalin, O. O. [1 ,2 ]
Mayorov, V. Yu. [1 ]
Kuryavyi, V. G. [1 ]
Kaidalova, T. A. [1 ]
Teplukhina, L. V. [1 ]
Portnyagin, A. S. [1 ,2 ]
Slobodyuk, A. B. [1 ]
Belov, A. A. [1 ,2 ]
Tananaev, I. G. [1 ,2 ,3 ]
Avramenko, V. A. [1 ]
Sergienko, V. I. [1 ]
机构
[1] Russian Acad Sci, Inst Chem, Far Eastern Branch, 159,Prosp 100 Letiya Vladivostoka, Vladivostok 690022, Russia
[2] Far Eastern Fed Univ, 8 Sukhanova St, Vladivostok 690091, Russia
[3] Russian Acad Sci, AN Frumkin Inst Phys Chem & Electrochem, 1 Leninsky Prosp, Moscow 199071, Russia
基金
俄罗斯科学基金会;
关键词
Natural zeolite; Ceramics and glass-ceramics; Immobilization; Radionuclides; Radiocesium; Hydrolytic stability; Ionizing radiation sources; Spark plasma sintering; STRUCTURE; PREPARATION; IMMOBILIZATION; POLLUCITE; VITRIFICATION; PHOSPHATES; FORM;
D O I
10.1016/j.jhazmat.2019.02.016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The work presents a novel method for fabrication of the high-quality ionizing radiation source (IRS), which is promising to replace unsafe commercial products based on (CsCl)-Cs-137 prohibited by IAEA. Spark plasma sintering (SPS) technique has been applied to produce dense ceramic and glass-ceramic matrixes from Cs-containing ((similar to)13.5 wt.%) zeolite yielding in non-dispersible cores sealed in the container of radiation-resistant steel (J93503, US standard). One-stage SPS regimes to provide high-quality product have been optimized: sintering temperature < 1000 C, heating and holging duration 13 and 5 min, respectively, pressure 24.5 MPa. XRD, SEM, EDX, BET, XFS and solid-state MAS NMR 133Cs methods prove exceptional physico-chemical and mechanical characteristics of the obtained materials, namely: density 99.8% from theoretical, compressive strength (similar to)477 MPa, leaching rate 10(-4)-10(-6)g cm(-2) day(-1). Results of the investigation can be promising for fabrication of the IRS cores on a large scale as done for similar Russian products RSL, IGI-C, M37C, GID-C.
引用
收藏
页码:25 / 30
页数:6
相关论文
共 33 条
  • [1] Cesium-iodide-based nanocrystal for the detection of ionizing radiation
    Farzaneh, Azadeh
    Abdi, Mohammad Reza
    Saraee, Khadijeh Rezaee Ebrahim
    Mostajaboddavati, Mojtaba
    Quaranta, A.
    OPTICAL MATERIALS, 2016, 55 : 22 - 26
  • [2] RING SOURCE OF DENSE, NON-COLLISION PLASMA AND IONIZING-RADIATION
    BARKHUDAROV, EM
    BEREZHETSKAYA, NK
    BOLSHAKOV, EF
    DOROFEYUK, AA
    ELETSKII, AV
    KOSSYI, IA
    TAKTAKISHVILI, MI
    ZHURNAL TEKHNICHESKOI FIZIKI, 1984, 54 (06): : 1219 - 1222
  • [3] The effect of cesium-containing leucite additions on the thermal and mechanical properties of two leucite-based porcelains
    Rasmussen, ST
    McLaren, CI
    O'Brien, WJ
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2004, 69B (02): : 195 - 204
  • [4] Cesium-Containing Perovskite Solar Cell Based on Graphene/TiO2 Electron Transport Layer
    Yang, Pan
    Hu, Zijun
    Zhao, Xiaochong
    Chen, Da
    Lin, Hong
    Lai, Xinchun
    Yang, Lijun
    CHEMISTRYSELECT, 2017, 2 (29): : 9433 - 9437
  • [5] Ribose-protected thioguanosine-based 1H NMR spectroscopic probe for the detection of cesium from solid cesium-containing sources in acetonitrile
    Luo, Qun
    Tang, Daihua
    Wu, Gang
    INORGANIC CHEMISTRY COMMUNICATIONS, 2008, 11 (11) : 1359 - 1362
  • [6] Ionizing radiation source-open type fabrication using additive technology and spark plasma sintering
    Papynov, E. K.
    Shichalin, O. O.
    Belov, A. A.
    Buravlev, I. Yu
    Portnyagin, A. S.
    Kozlov, A. G.
    Gridasova, E. A.
    Tananaev, I. G.
    Sergienko, V. I.
    CERAMICS INTERNATIONAL, 2023, 49 (02) : 3083 - 3087
  • [7] ZnO nanocrystals incorporating PEIE and a fluorene-based polyelectrolyte as electron transport layers for pure cesium-containing perovskite light-emitting devices
    Chang, Chun-Jung
    Yang, Sheng-Hsiung
    MATERIALS RESEARCH EXPRESS, 2019, 6 (10)
  • [8] Polymerization of methyl methacrylate through ionizing radiation in CO2-based dense systems.
    Filardo, G
    Caputo, G
    Galia, A
    Calderaro, E
    Spadaro, G
    MACROMOLECULES, 2000, 33 (02) : 278 - 283
  • [9] A BETA-RADIATION SOURCE BASED ON POLYSTYRENE CONTAINING TRITIUM
    GULKO, VM
    KNIZHNIK, EI
    RUDISHIN, VK
    YASHCHUK, AI
    SOVIET ATOMIC ENERGY, 1980, 48 (02): : 131 - 132
  • [10] The generation of geomagnetic pulses in ionospheric plasma from ground-based source of ionizing radiation
    Gorbachev, LP
    Matronchik, AY
    IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA, 1999, 63 (11): : 2274 - 2277