Mock data and science challenge for detecting an astrophysical stochastic gravitational-wave background with Advanced LIGO and Advanced Virgo

被引:43
|
作者
Meacher, Duncan [1 ,2 ]
Coughlin, Michael [3 ]
Morris, Sean [4 ]
Regimbau, Tania [1 ]
Christensen, Nelson [6 ]
Kandhasamy, Shivaraj [7 ]
Mandic, Vuk [8 ]
Romano, Joseph D. [5 ]
Thrane, Eric [9 ]
机构
[1] Univ Cote Azur, Lab Artemis, CNRS, Observ Cote Azur, F-06304 Nice 4, France
[2] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[4] Univ Texas Brownsville, Dept Phys & Astron, Brownsville, TX 78520 USA
[5] Univ Texas Brownsville, Ctr Gravitat Wave Astron, Brownsville, TX 78520 USA
[6] Carleton Coll, Phys & Astron, Northfield, MN 55057 USA
[7] Univ Mississippi, Phys & Astron, University, MS 38677 USA
[8] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[9] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia
来源
PHYSICAL REVIEW D | 2015年 / 92卷 / 06期
基金
美国国家科学基金会;
关键词
GAMMA-RAY BURST; COSMOLOGICAL POPULATION; RADIATION; SPECTRUM; LIMITS;
D O I
10.1103/PhysRevD.92.063002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The purpose of this mock data and science challenge is to prepare the data analysis and science interpretation for the second generation of gravitational-wave experiments Advanced LIGO-Virgo in the search for a stochastic gravitational-wave background signal of astrophysical origin. Here we present a series of signal and data challenges, with increasing complexity, whose aim is to test the ability of current data analysis pipelines at detecting an astrophysically produced gravitational-wave background, test parameter estimation methods and interpret the results. We introduce the production of these mock data sets that includes a realistic observing scenario data set where we account for different sensitivities of the advanced detectors as they are continuously upgraded toward their design sensitivity. After analyzing these with the standard isotropic cross-correlation pipeline we find that we are able to recover the injected gravitational-wave background energy density to within 2 sigma for all of the data sets and present the results from the parameter estimation. The results from this mock data and science challenge show that advanced LIGO and Virgo will be ready and able to make a detection of an astrophysical gravitational-wave background within a few years of operations of the advanced detectors, given a high enough rate of compact binary coalescing events.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Gravitational-Wave Observations by Advanced LIGO and Virgo
    Schmidt, P.
    [J]. 16TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS (TAUP 2019), 2020, 1468
  • [2] Forecasts for detecting the gravitational-wave memory effect with Advanced LIGO and Virgo
    Boersma, Oliver M.
    Nichols, David A.
    Schmidt, Patricia
    [J]. PHYSICAL REVIEW D, 2020, 101 (08)
  • [3] Gravitational-wave searches in the era of Advanced LIGO and Virgo
    Caudill, Sarah
    Kandhasamy, Shivaraj
    Lazzaro, Claudia
    Matas, Andrew
    Sieniawska, Magdalena
    Stuver, Amber L.
    [J]. MODERN PHYSICS LETTERS A, 2021, 36 (23)
  • [4] Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abernathy, M. R.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Altin, P. A.
    Amariutei, D. V.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Arceneaux, C. C.
    Areeda, J. S.
    Arnaud, N.
    Arun, K. G.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Baker, P. T.
    Baldaccini, F.
    Ballardin, G.
    Ballmer, S. W.
    Barayoga, J. C.
    Barclay, S. E.
    Barish, B. C.
    Barker, D.
    Barone, F.
    Barr, B.
    Barsotti, L.
    Barsuglia, M.
    Barta, D.
    [J]. LIVING REVIEWS IN RELATIVITY, 2016, 19 : 1 - 39
  • [5] Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo
    B. P. Abbott
    R. Abbott
    T. D. Abbott
    M. R. Abernathy
    F. Acernese
    K. Ackley
    C. Adams
    T. Adams
    P. Addesso
    R. X. Adhikari
    V. B. Adya
    C. Affeldt
    M. Agathos
    K. Agatsuma
    N. Aggarwal
    O. D. Aguiar
    A. Ain
    P. Ajith
    B. Allen
    A. Allocca
    P. A. Altin
    D. V. Amariutei
    S. B. Anderson
    W. G. Anderson
    K. Arai
    M. C. Araya
    C. C. Arceneaux
    J. S. Areeda
    N. Arnaud
    K. G. Arun
    G. Ashton
    M. Ast
    S. M. Aston
    P. Astone
    P. Aufmuth
    C. Aulbert
    S. Babak
    P. T. Baker
    F. Baldaccini
    G. Ballardin
    S. W. Ballmer
    J. C. Barayoga
    S. E. Barclay
    B. C. Barish
    D. Barker
    F. Barone
    B. Barr
    L. Barsotti
    M. Barsuglia
    D. Barta
    [J]. Living Reviews in Relativity, 2016, 19
  • [6] Anisotropies in the astrophysical gravitational-wave background: Predictions for the detection of compact binaries by LIGO and Virgo
    Jenkins, Alexander C.
    Sakellariadou, Mairi
    Regimbau, Tania
    Slezak, Eric
    [J]. PHYSICAL REVIEW D, 2018, 98 (06)
  • [7] Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA
    B. P. Abbott
    R. Abbott
    T. D. Abbott
    S. Abraham
    F. Acernese
    K. Ackley
    C. Adams
    V. B. Adya
    C. Affeldt
    M. Agathos
    K. Agatsuma
    N. Aggarwal
    O. D. Aguiar
    L. Aiello
    A. Ain
    P. Ajith
    T. Akutsu
    G. Allen
    A. Allocca
    M. A. Aloy
    P. A. Altin
    A. Amato
    A. Ananyeva
    S. B. Anderson
    W. G. Anderson
    M. Ando
    S. V. Angelova
    S. Antier
    S. Appert
    K. Arai
    Koya Arai
    Y. Arai
    S. Araki
    A. Araya
    M. C. Araya
    J. S. Areeda
    M. Arène
    N. Aritomi
    N. Arnaud
    K. G. Arun
    S. Ascenzi
    G. Ashton
    Y. Aso
    S. M. Aston
    P. Astone
    F. Aubin
    P. Aufmuth
    K. AultONeal
    C. Austin
    V. Avendano
    [J]. Living Reviews in Relativity, 2020, 23
  • [8] Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abraham, S.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Akutsu, T.
    Allen, G.
    Allocca, A.
    Aloy, M. A.
    Altin, P. A.
    Amato, A.
    Ananyeva, A.
    Anderson, S. B.
    Anderson, W. G.
    Ando, M.
    Angelova, S. V.
    Antier, S.
    Appert, S.
    Arai, K.
    Arai, Koya
    Arai, Y.
    Araki, S.
    Araya, A.
    Araya, M. C.
    Areeda, J. S.
    Arene, M.
    Aritomi, N.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Aso, Y.
    Aston, S. M.
    Astone, P.
    Aubin, F.
    Aufmuth, P.
    AultONeal, K.
    Austin, C.
    Avendano, V.
    [J]. LIVING REVIEWS IN RELATIVITY, 2020, 23 (01)
  • [9] Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA
    B. P. Abbott
    R. Abbott
    T. D. Abbott
    M. R. Abernathy
    F. Acernese
    K. Ackley
    C. Adams
    T. Adams
    P. Addesso
    R. X. Adhikari
    V. B. Adya
    C. Affeldt
    M. Agathos
    K. Agatsuma
    N. Aggarwal
    O. D. Aguiar
    L. Aiello
    A. Ain
    P. Ajith
    T. Akutsu
    B. Allen
    A. Allocca
    P. A. Altin
    A. Ananyeva
    S. B. Anderson
    W. G. Anderson
    M. Ando
    S. Appert
    K. Arai
    A. Araya
    M. C. Araya
    J. S. Areeda
    N. Arnaud
    K. G. Arun
    H. Asada
    S. Ascenzi
    G. Ashton
    Y. Aso
    M. Ast
    S. M. Aston
    P. Astone
    S. Atsuta
    P. Aufmuth
    C. Aulbert
    A. Avila-Alvarez
    K. Awai
    S. Babak
    P. Bacon
    M. K. M. Bader
    L. Baiotti
    [J]. Living Reviews in Relativity, 2018, 21
  • [10] Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abernathy, M. R.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Akutsu, T.
    Allen, B.
    Allocca, A.
    Altin, P. A.
    Ananyeva, A.
    Anderson, S. B.
    Anderson, W. G.
    Ando, M.
    Appert, S.
    Arai, K.
    Araya, A.
    Araya, M. C.
    Areeda, J. S.
    Arnaud, N.
    Arun, K. G.
    Asada, H.
    Ascenzi, S.
    Ashton, G.
    Aso, Y.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Atsuta, S.
    Aufmuth, P.
    Aulbert, C.
    Avila-Alvarez, A.
    Awai, K.
    Babak, S.
    Bacon, P.
    Bader, M. K. M.
    Baiotti, L.
    [J]. LIVING REVIEWS IN RELATIVITY, 2018, 21