An adaptive neuro-fuzzy inference system (anfis) model for assessing occupational risk in the shipbuilding industry

被引:50
|
作者
Fragiadakis, N. G. [1 ]
Tsoukalas, V. D. [2 ]
Papazoglou, V. J. [1 ]
机构
[1] Natl Tech Univ Athens, Sch Naval Architecture & Marine Engn, Shipbldg Technol Lab, Zografos 15780, Greece
[2] Athens Merchant Marine Acad, Dept Marine Engn, Aspropyrgos 19300, Greece
关键词
Risk assessment; Occupational accident; Shipbuilding industry; Fuzzy inference; Artificial neural networks; INJURIES; CLASSIFICATION; REGRESSION; ACCIDENTS; WORKERS; SAFETY;
D O I
10.1016/j.ssci.2013.11.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this research an adaptive neuro-fuzzy inference system (ANFIS) has been applied to study the effect of working conditions on occupational injury using data of professional accidents assembled by ship repair yards. The data were statistically processed in order to select the most important parameters. These parameters were day and time, specialty, type of incident, dangerous situations and dangerous actions involved in the incident. The selected parameters proved, due to statistical processing, to be correlated to the observed frequency of four injury categories, namely negligible wounding, slight wounding, severe wounding and death. For each parameter a Gravity Factor (GF) was calculated based on the percentage of injury categories resulting to the incident each of the above mentioned parameter was involved. These GF values and the resulting risk value based on the accident data were used as input values to train the ANFIS model. Trapezoidal and Gauss membership functions were used for the training of the data. The model combined the modeling function of fuzzy inference with the learning ability of artificial neural networks. A set of rules has been generated directly from the statistically processed reported data. The model's predictions were compared with a number of recorded data for verifying the approach. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:226 / 235
页数:10
相关论文
共 50 条
  • [1] An adaptive neuro-fuzzy inference system (ANFIS) model for wire-EDM
    Caydas, Ulas
    Hascalik, Ahmet
    Ekici, Sami
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (03) : 6135 - 6139
  • [2] An adaptive neuro-fuzzy inference system (ANFIS) model for high pressure die casting
    Tsoukalas, V. D.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2011, 225 (B12) : 2276 - 2286
  • [3] An adaptive neuro-fuzzy inference system (ANFIS) model for thermophysical properties of new refrigerant
    Sencan, Arzu
    Kose, Ismail Ilke
    Selbas, Resat
    ENERGY EDUCATION SCIENCE AND TECHNOLOGY PART A-ENERGY SCIENCE AND RESEARCH, 2011, 27 (02): : 275 - 286
  • [4] Development of Adaptive Neuro-Fuzzy Inference System for Assessing Industry Leadership in Accident Situations
    De Souza Cerqueira, Ivone Conceicao
    Carvalho, P. P. S.
    Moya Rodriguez, Jorge Laureano
    Avila Filho, Salvador
    Freires, Francisco Gaudencio M.
    IEEE ACCESS, 2022, 10 : 102933 - 102944
  • [5] A Sales Forecasting Model in Automotive Industry using Adaptive Neuro-Fuzzy Inference System(Anfis) and Genetic Algorithm(GA)
    Vahabi, Amirmahmood
    Hosseininia, Shahrooz Seyyedi
    Alborzi, Mahmood
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (11) : 24 - 30
  • [6] Adaptive Neuro-Fuzzy Inference System for Assessing the Maintainability of the Software
    Therasa, P. R.
    Vivekanandan, P.
    2017 NINTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC), 2017, : 204 - 212
  • [7] An adaptive neuro-fuzzy inference system (ANFIS) model to predict the pozzolanic activity of natural pozzolans
    Varol, Elif
    Benzera, Didem
    Ozcan, Nazli Tunar
    COMPUTERS AND CONCRETE, 2023, 31 (02): : 85 - 95
  • [8] Modeling and Simulation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning
    Al-Hmouz, Ahmed
    Shen, Jun
    Al-Hmouz, Rami
    Yan, Jun
    IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, 2012, 5 (03): : 226 - 237
  • [9] An Implementation of the Adaptive Neuro-Fuzzy Inference System (ANFIS) for Odor Source Localization
    Wang, Lingxiao
    Pang, Shuo
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 4551 - 4558
  • [10] LANDSLIDE SUSCEPTIBILITY MAPPING BY USING AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
    Choi, J.
    Lee, Y. K.
    Lee, M. J.
    Kim, K.
    Park, Y.
    Kim, S.
    Goo, S.
    Cho, M.
    Sim, J.
    Won, J. S.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1989 - 1992