Patch-based Evaluation of Image Segmentation

被引:11
|
作者
Ledig, Christian [1 ]
Shi, Wenzhe [1 ]
Bai, Wenjia [1 ]
Rueckert, Daniel [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2AZ, England
关键词
VALIDATION; ALGORITHMS;
D O I
10.1109/CVPR.2014.392
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The quantification of similarity between image segmentations is a complex yet important task. The ideal similarity measure should be unbiased to segmentations of different volume and complexity, and be able to quantify and visualise segmentation bias. Similarity measures based on overlap, e.g. Dice score, or surface distances, e.g. Hausdorff distance, clearly do not satisfy all of these properties. To address this problem, we introduce Patch-based Evaluation of Image Segmentation (PEIS), a general method to assess segmentation quality. Our method is based on finding patch correspondences and the associated patch displacements, which allow the estimation of segmentation bias. We quantify both the agreement of the segmentation boundary and the conservation of the segmentation shape. We further assess the segmentation complexity within patches to weight the contribution of local segmentation similarity to the global score. We evaluate PEIS on both synthetic data and two medical imaging datasets. On synthetic segmentations of different shapes, we provide evidence that PEIS, in comparison to the Dice score, produces more comparable scores, has increased sensitivity and estimates segmentation bias accurately. On cardiac magnetic resonance (MR) images, we demonstrate that PEIS can evaluate the performance of a segmentation method independent of the size or complexity of the segmentation under consideration. On brain MR images, we compare five different automatic hippocampus segmentation techniques using PEIS. Finally, we visualise the segmentation bias on a selection of the cases.
引用
收藏
页码:3065 / 3072
页数:8
相关论文
共 50 条
  • [1] Patch-based fuzzy clustering for image segmentation
    Xiaofeng Zhang
    Qiang Guo
    Yujuan Sun
    Hui Liu
    Gang Wang
    Qingtang Su
    Caiming Zhang
    Soft Computing, 2019, 23 : 3081 - 3093
  • [2] Patch-based fuzzy clustering for image segmentation
    Zhang, Xiaofeng
    Guo, Qiang
    Sun, Yujuan
    Liu, Hui
    Wang, Gang
    Su, Qingtang
    Zhang, Caiming
    SOFT COMPUTING, 2019, 23 (09) : 3081 - 3093
  • [3] A Latent Source Model for Patch-Based Image Segmentation
    Chen, George H.
    Shah, Devavrat
    Golland, Polina
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 140 - 148
  • [4] Localized Patch-Based Fuzzy Active Contours for Image Segmentation
    Fang, Jiangxiong
    Liu, Hesheng
    Liu, Huaxiang
    Zhang, Liting
    Liu, Jun
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2016, 2016
  • [5] Geodesic patch-based segmentation
    Wang, Zehan
    Bhatia, Kanwal K.
    Glocker, Ben
    Marvao, Antonio
    Dawes, Tim
    Misawa, Kazunari
    Mori, Kensaku
    Rueckert, Daniel
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8673 : 666 - 673
  • [6] Learning a Sparse Database for Patch-Based Medical Image Segmentation
    Freiman, Moti
    Nickisch, Hannes
    Schmitt, Holger
    Maurovich-Horvat, Pal
    Donnelly, Patrick
    Vembar, Mani
    Goshen, Liran
    PATCH-BASED TECHNIQUES IN MEDICAL IMAGING (PATCH-MI 2017), 2017, 10530 : 47 - 54
  • [7] Patch-Based Mathematical Morphology for Image Processing, Segmentation and Classification
    Lezoray, Olivier
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2015, 2015, 9386 : 46 - 57
  • [8] Geodesic Patch-Based Segmentation
    Wang, Zehan
    Bhatia, Kanwal K.
    Glocker, Ben
    Marvao, Antonio
    Dawes, Tim
    Misawa, Kazunari
    Mori, Kensaku
    Rueckert, Daniel
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2014, PT I, 2014, 8673 : 666 - +
  • [9] PATCH-BASED FEATURE MAPS FOR PIXEL-LEVEL IMAGE SEGMENTATION
    Cao, Shuoying
    Iftikhar, Saadia
    Bharath, Anil Anthony
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 2263 - 2267
  • [10] Patch-based renal CTA image segmentation with U-Net
    Les, Tomasz
    PROCEEDINGS OF 2020 IEEE 21ST INTERNATIONAL CONFERENCE ON COMPUTATIONAL PROBLEMS OF ELECTRICAL ENGINEERING (CPEE), 2020,