Detection of tip-vortex signatures behind a 2.5 MW wind turbine

被引:16
|
作者
Toloui, Mostafa [1 ,2 ]
Chamorro, Leonardo P. [3 ]
Hong, Jiarong [1 ,2 ]
机构
[1] Univ Minnesota, St Anthony Falls Lab, Minneapolis, MN 55414 USA
[2] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA
[3] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
关键词
Wind turbine; Field measurement; Turbine wake; Tip vortex; Vortex grouping; Spectral analysis; WAKE; FLOW; STABILITY; VORTICES;
D O I
10.1016/j.jweia.2015.05.001
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The near-field signature of the vortical structures shed from the blade tips behind a 2.5 MW horizontal axis wind turbine in a stably-stratified atmospheric boundary layer (ABL) was quantified for the first time. This study utilizes wind velocity measurements from sonic anemometers installed on a meteorological tower, which offers continuous characterization of wind conditions in the field, at elevations coinciding with the bottom, hub and top tip heights of the turbine. Using the stringent criteria on wind speed, direction and steadiness, we are able to subsample the dataset in which the sonic anemometers are positioned near the edge of the turbine wake. The spectral analysis of this dataset shows a distinct peak at the turbine rotational frequency (f(T)) for hub and top tip height measurements. Based on recent literature, we infer that this peak is the signature of tip-vortices, and the shift of this signature from blade-passing frequency (3f(T)) to f(T) is likely to be caused by vortex grouping phenomena. Slight changes of mean wind direction in other data samples result in the absence of the spectral peak, suggesting the very local extent of tip vortices. (c) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:105 / 112
页数:8
相关论文
共 50 条
  • [1] An experimental study of tip-vortex structures behind a small wind turbine with a flanged diffuser
    Abe, K.
    Kihara, H.
    Sakurai, A.
    Wada, E.
    Sato, K.
    Nishida, M.
    Ohya, Y.
    [J]. WIND AND STRUCTURES, 2006, 9 (05) : 413 - 417
  • [2] Tip-Vortex Noise Reduction of a Wind Turbine Using a Winglet
    Ebrahimi, Abbas
    Mardani, Ramin
    [J]. JOURNAL OF ENERGY ENGINEERING, 2018, 144 (01)
  • [3] Tip-vortex instability and turbulent mixing in wind-turbine wakes
    Lignarolo, L. E. M.
    Ragni, D.
    Scarano, F.
    Ferreira, C. J. Simao
    van Bussel, G. J. W.
    [J]. JOURNAL OF FLUID MECHANICS, 2015, 781 : 467 - 493
  • [4] Accelerated Wind-Turbine Wake Recovery Through Actuation of the Tip-Vortex Instability
    Brown, Kenneth
    Houck, Daniel
    Maniaci, David
    Westergaard, Carsten
    Kelley, Christopher
    [J]. AIAA JOURNAL, 2022, 60 (05) : 3298 - 3310
  • [5] Numerical investigation of the influence of shear and thermal stratification on the wind turbine tip-vortex stability
    Hodgkin, Amy
    Laizet, Sylvain
    Deskos, Georgios
    [J]. WIND ENERGY, 2022, 25 (07) : 1270 - 1289
  • [6] Tip-vortex breakdown of wind turbines subject to shear
    Kleusberg, Elektra
    Benard, Sabrina
    Henningson, Dan S.
    [J]. WIND ENERGY, 2019, 22 (12) : 1789 - 1799
  • [7] Tip-vortex instabilities of two in-line wind turbines
    Kleine, V. G.
    Kleusberg, E.
    Hanifi, A.
    Henningson, D. S.
    [J]. WAKE CONFERENCE, 2019, 1256
  • [8] The origins of a wind turbine tip vortex
    Micallef, Daniel
    Akay, Busra
    Ferreira, Carlos Simao
    Sant, Tonio
    van Bussel, Gerard
    [J]. SCIENCE OF MAKING TORQUE FROM WIND 2012, 2014, 555
  • [9] CFD Prediction of Tip Vortex Aging in the Wake of a Multi-MW Wind Turbine
    Cormier, Marion
    Buehler, Manuel
    Mauz, Moritz
    Lutz, Thorsten
    Bange, Jens
    Kraemer, Ewald
    [J]. SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2020), PTS 1-5, 2020, 1618
  • [10] Effects of yaw on wake expansion and tip-vortex dissipation of wind turbine blades based on high-frequency PIV
    Ma J.
    Li X.
    Lü W.
    Huo D.
    Wu Y.
    Wang J.
    [J]. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2019, 35 (11): : 57 - 62