Bayesian Inference for the Causal Effect of Mediation

被引:35
|
作者
Daniels, Michael J. [1 ]
Roy, Jason A. [2 ]
Kim, Chanmin [1 ]
Hogan, Joseph W. [3 ]
Perri, Michael G. [4 ]
机构
[1] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[2] Univ Penn, Dept Biostat, Philadelphia, PA 19104 USA
[3] Brown Univ, Dept Biostat, Providence, RI 02912 USA
[4] Univ Florida, Dept Clin & Hlth Psychol, Gainesville, FL 32611 USA
关键词
Causal inference; Direct effect; Indirect effect; Mediators; Nonparametric Bayes; Sensitivity analysis; PRINCIPAL STRATIFICATION; SENSITIVITY-ANALYSIS; IDENTIFIABILITY;
D O I
10.1111/j.1541-0420.2012.01781.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a nonparametric Bayesian approach to estimate the natural direct and indirect effects through a mediator in the setting of a continuous mediator and a binary response. Several conditional independence assumptions are introduced (with corresponding sensitivity parameters) to make these effects identifiable from the observed data. We suggest strategies for eliciting sensitivity parameters and conduct simulations to assess violations to the assumptions. This approach is used to assess mediation in a recent weight management clinical trial.
引用
收藏
页码:1028 / 1036
页数:9
相关论文
共 50 条
  • [1] A framework for Bayesian nonparametric inference for causal effects of mediation
    Kim, Chanmin
    Daniels, Michael J.
    Marcus, Bess H.
    Roy, Jason A.
    [J]. BIOMETRICS, 2017, 73 (02) : 401 - 409
  • [2] Causal Inference With Mediation Analysis
    Chen, Jianping
    [J]. CRITICAL CARE MEDICINE, 2020, 48 (01) : E77 - E78
  • [3] Bayesian inference for causal mediation effects using principal stratification with dichotomous mediators and outcomes
    Elliott, Michael R.
    Raghunathan, Trivellore E.
    Li, Yun
    [J]. BIOSTATISTICS, 2010, 11 (02) : 353 - 372
  • [4] Active Bayesian Causal Inference
    Toth, Christian
    Lorch, Lars
    Knoll, Christian
    Krause, Andreas
    Pernkopf, Franz
    Peharz, Robert
    von Kuegelgen, Julius
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [5] SEMIPARAMETRIC BAYESIAN CAUSAL INFERENCE
    Ray, Kolyan
    van der Vaart, Aad
    [J]. ANNALS OF STATISTICS, 2020, 48 (05): : 2999 - 3020
  • [6] Causal Inference With Mediation Analysis reply
    Rogers, Angela J.
    Desai, Menisha
    Matthay, Michael A.
    Choi, Augustine M.
    Baron, Rebecca M.
    [J]. CRITICAL CARE MEDICINE, 2020, 48 (01) : E78 - E78
  • [7] Bayesian Nonparametric Modeling for Causal Inference
    Hill, Jennifer L.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (01) : 217 - 240
  • [8] Bayesian causal inference: a critical review
    Li, Fan
    Ding, Peng
    Mealli, Fabrizia
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2247):
  • [9] Bayesian Topic Regression for Causal Inference
    Ahrens, Maximilian
    Ashwin, Julian
    Calliess, Jan-Peter
    Vu Nguyen
    [J]. 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 8162 - 8188
  • [10] Explanation in causal inference: Methods for mediation and interaction
    Boehnke, Jan R.
    [J]. QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2016, 69 (06): : 1243 - 1244