Guiding and collimation of laser-accelerated proton beams using thin foils followed with a hollow plasma channel

被引:14
|
作者
Xiao, K. D. [1 ,2 ]
Zhou, C. T. [1 ,2 ,3 ,4 ]
Qiao, B. [1 ,2 ,5 ]
He, X. T. [1 ,2 ,3 ]
机构
[1] Peking Univ, Ctr Appl Phys & Technol, HEDPS, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[3] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
[4] Natl Univ Def Technol, Coll Sci, Changsha 410073, Hunan, Peoples R China
[5] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
GENERATION;
D O I
10.1063/1.4930261
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It is proposed that guided and collimated proton acceleration by intense lasers can be achieved using an advanced target-a thin foil followed by a hollow plasma channel. For the advanced target, the laser-accelerated hot electrons can be confined in the hollow channel at the foil rear side, which leads to the formation of transversely localized, Gaussian-distributed sheath electric field and resultantly guiding of proton acceleration. Further, due to the hot electron flow along the channel wall, a strong focusing transverse electric field is induced, taking the place of the original defocusing one driven by hot electron pressure in the case of a purely thin foil target, which results in collimation of proton beams. Two-dimensional particle-in-cell simulations show that collimated proton beams with energy about 20 MeV and nearly half-reduced divergence of 26 degrees are produced at laser intensities 10(20)W/cm(2) by using the advanced target. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Curved capillary discharge for guiding and focusing laser-accelerated proton beams
    Yan, Yang
    Huang, Mingfeng
    Fang, Yanlv
    Li, Chentong
    Chen, Zimin
    Yang, Tong
    He, Qiangyou
    Yan, Yiting
    Yan, Wei
    Zhu, Kun
    Lin, Chen
    Yan, Xueqing
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2025, 28 (03)
  • [2] Laser-PIXE using laser-accelerated proton beams
    M. Barberio
    P. Antici
    Scientific Reports, 9
  • [3] Laser-PIXE using laser-accelerated proton beams
    Barberio, M.
    Antici, P.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [4] Pointing of laser-accelerated proton beams
    Schreiber, J
    Ter-Avetisyan, S
    Risse, E
    Kalachnikov, MP
    Nickles, PV
    Sandner, W
    Schramm, U
    Habs, D
    Witte, J
    Schnürer, M
    PHYSICS OF PLASMAS, 2006, 13 (03)
  • [5] Design of scattering foils for laser-accelerated electron beams
    Kainz, K
    Hogstrom, K
    Almond, P
    Antolak, J
    Bloch, C
    MEDICAL PHYSICS, 2003, 30 (06) : 1518 - 1518
  • [6] Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity
    Teng, J.
    Gu, Y. Q.
    Zhu, B.
    Hong, W.
    Zhao, Z. Q.
    Zhou, W. M.
    Cao, L. F.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2013, 729 : 399 - 403
  • [7] Graphitization of diamond by laser-accelerated proton beams
    Barberio, M.
    Vallieres, S.
    Sciscio, M.
    Kolhatkar, G.
    Ruediger, A.
    Antici, P.
    CARBON, 2018, 139 : 531 - 537
  • [8] Distribution uniformity of laser-accelerated proton beams
    朱军高
    朱昆
    陶立
    徐筱菡
    林晨
    马文君
    卢海洋
    赵研英
    陆元荣
    陈佳洱
    颜学庆
    Chinese Physics C, 2017, (09) : 148 - 156
  • [9] Possibility of laser-accelerated proton beams in radiotherapy
    Murakamil, M.
    Miyajima, S.
    Sutherland, K.
    Bulanov, S.
    Esirkepov, T.
    Koga, J.
    Yamaji, K.
    Yamagiwa, M.
    Hishikawa, Y.
    Tajima, T.
    EJC SUPPLEMENTS, 2005, 3 (02): : 410 - 410
  • [10] Distribution uniformity of laser-accelerated proton beams
    Zhu, Jun-Gao
    Zhu, Kun
    Tao, Li
    Xu, Xiao-Han
    Lin, Chen
    Ma, Wen-Jun
    Lu, Hai-Yang
    Zhao, Yan-Ying
    Lu, Yuan-Rong
    Chen, Jia-Er
    Yan, Xue-Qing
    CHINESE PHYSICS C, 2017, 41 (09)