Hyperspectral Image Classification Based on Residual Dense Network

被引:5
|
作者
Wei Xiangpo [1 ]
Yu Xuchu [1 ]
Tan Xiong [1 ]
Liu Bing [1 ]
机构
[1] Informat Engn Univ, Zhengzhou 450001, Henan, Peoples R China
关键词
image proceedings; hyperspectral image; residual learning; dense network; residual dense network;
D O I
10.3788/LOP56.151006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A convolutional neural network (CNN) can extract hierarchical features in an image, and the extracted images include a large amount of detailed information contained in the image. However, CNN-based methods do not take full advantage of all hierarchical features extracted by the network. To make full use of all hierarchical features and enhance feature reuse and information flow, we design a residual dense network suitable for hyperspectral image classification. The residual dense network combines residual and dense networks, including shallow feature extraction, residual dense units, and dense feature fusion. Firstly, shallow features of the original image arc extracted using a convolution operation, which is input to the residual dense unit. Secondly, the output of the residual dense unit establishes a shortcut connection with each convolution layer and output layer in the next unit, thereby realizing continuous information transmission. Subsequently, dense features extracted from the two units arc added to the shallow features to form global residual learning, which realizes the fusion of all hierarchical features. The fused features arc then used for hyperspectral image classification. Experimental results demonstrate that the proposed method can obtain 98.71 %, 99.31 %, and 97.91 % classification accuracies on the Indian Pines, University of Pavia, and Salinas data, respectively, which effectively improves the classification accuracy of hyperspectral images and enhances the stability of classification methods.
引用
收藏
页数:9
相关论文
共 19 条
  • [1] [Anonymous], 2017, ACTA OPT SIN
  • [2] Hyperspectral Remote Sensing Data Analysis and Future Challenges
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Camps-Valls, Gustavo
    Scheunders, Paul
    Nasrabadi, Nasser M.
    Chanussot, Jocelyn
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) : 6 - 36
  • [3] Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network
    Chen, Yushi
    Zhao, Xing
    Jia, Xiuping
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2381 - 2392
  • [4] Deep Learning-Based Classification of Hyperspectral Data
    Chen, Yushi
    Lin, Zhouhan
    Zhao, Xing
    Wang, Gang
    Gu, Yanfeng
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2094 - 2107
  • [5] He K., 2016, CVPR, DOI [10.1109/CVPR.2016.90, DOI 10.1109/CVPR.2016.90]
  • [6] Deep Convolutional Neural Networks for Hyperspectral Image Classification
    Hu, Wei
    Huang, Yangyu
    Wei, Li
    Zhang, Fan
    Li, Hengchao
    [J]. JOURNAL OF SENSORS, 2015, 2015
  • [7] Huang G, 2017, PROC CVPR IEEE, P4700, DOI [DOI 10.1109/CVPR.2017.243, 10.1109/CVPR.2017.243]
  • [8] Huang H, 2017, LASER OPTOELECTRON P, V54
  • [9] Kingma DP, 2014, ARXIV
  • [10] Hyperspectral Image Classification Using Deep Pixel-Pair Features
    Li, Wei
    Wu, Guodong
    Zhang, Fan
    Du, Qian
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (02): : 844 - 853