Measurement of thermal expansion coefficient of INVAR foil using atomic force microscopy

被引:5
|
作者
Lin, Jing-Jenn [1 ]
Wu, You-Lin [2 ]
Yang, Cheng-Fu [3 ]
Wang, Wei-Wen [1 ]
机构
[1] Natl Chi Nan Univ, Dept Appl Mat & Optoelect Engn, Taipei, Taiwan
[2] Natl Chi Nan Univ, Dept Elect Engn, Taipei, Taiwan
[3] Natl Univ Kaohsiung, Dept Chem & Mat Engn, Kaohsiung, Taiwan
关键词
Linear coefficient of thermal expansion; INVAR; Atomic force microscopy; STRESS; FILMS;
D O I
10.1016/j.measurement.2013.09.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The production of organic light emitting diode (OLED) displays depends on the use of the low coefficient of thermal expansion (CTE) of INVAR foils as the shadow mask. The high-resolution of the smartphone displays requires increasingly thin INVAR in a two-step etching process. However, it is difficult to measure CTE for very thin metal foils. A simple method is developed to measure the linear CTE of the INVAR foil using atomic force microscopy (AFM). This method uses a focus-ion-beam (FIB) to etch a 5000 mu m trench on the INVAR foil. The thermal drift of the system is calibrated from AFM images, and the average linear CTE of the INVAR foil is then calculated from the displacements of two side end points of the trench on the foil during temperature variation. The linear CTE obtained by the proposed method is quite close to the value of the bulk INVAR provided by the manufacturer. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:373 / 378
页数:6
相关论文
共 50 条
  • [1] Controlling the coefficient of thermal expansion of printed wiring board using copper-invar-copper foil
    Johannes, William R.
    Johnson, Wray
    International Journal of Microcircuits and Electronic Packaging, 1994, 17 (02): : 135 - 142
  • [2] LINEAR COEFFICIENT OF THERMAL EXPANSION OF POROUS ANODIC ALUMINA THIN FILMS FROM ATOMIC FORCE MICROSCOPY
    Zhang, X. Richard
    Fisher, T. S.
    Raman, A.
    Sands, T. D.
    NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2009, 13 (04) : 243 - 252
  • [3] Thermal expansion and temperature measurement in a microscopic scale by using the Atomic Force Microscope
    Igeta, M
    Inoue, T
    Varesi, J
    Majumdar, A
    JSME INTERNATIONAL JOURNAL SERIES B-FLUIDS AND THERMAL ENGINEERING, 1999, 42 (04) : 723 - 730
  • [4] Position measurement using atomic force microscopy
    Doi, O
    Torii, A
    Ueda, A
    MHS2001: PROCEEDINGS OF THE 2001 INTERNATIONAL SYMPOSIUM ON MICROMECHATRONICS AND HUMAN SCIENCE, 2001, : 143 - 148
  • [5] "Noiseless" thermal noise measurement of atomic force microscopy cantilevers
    Pottier, Basile
    Bellon, Ludovic
    APPLIED PHYSICS LETTERS, 2017, 110 (09)
  • [6] Quantitative impedance measurement using atomic force microscopy
    O'Hayre, R
    Feng, G
    Nix, WD
    Prinz, FB
    JOURNAL OF APPLIED PHYSICS, 2004, 96 (06) : 3540 - 3549
  • [8] Measurement of microoptical components using atomic force microscopy
    Haselbeck, S
    Schwider, J
    TECHNISCHES MESSEN, 1996, 63 (05): : 191 - 193
  • [9] Quantitative Impedance measurement using atomic force microscopy
    O'Hayre, R., 1600, American Institute of Physics Inc. (96):
  • [10] Piezoelectric hysteresis measurement using atomic force microscopy
    Shin, H
    Shin, JK
    Hong, SB
    Jeon, JU
    Song, HW
    Hong, JI
    No, K
    INTEGRATED FERROELECTRICS, 2001, 38 (1-4) : 675 - 682