Singular Riccati equations stabilizing large-scale systems

被引:4
|
作者
Gallivan, K
Rao, X
Van Dooren, P
机构
[1] Florida State Univ, Tallahassee, FL 32306 USA
[2] Univ Catholique Louvain, B-1348 Louvain, Belgium
基金
美国国家科学基金会;
关键词
stabilization; linear time-invariant system; Riccati difference equation;
D O I
10.1016/j.laa.2004.12.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss the convergence of a stabilization algorithm based on a singular version of the discrete Riccati difference equation. This method is particularly appealing for large scale linear time invariant dynamical systems since one can nicely exploit the sparsity of such systems in order to reduce the complexity of the algorithm. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:359 / 372
页数:14
相关论文
共 50 条
  • [2] STABILIZING CONTROLLER AND OBSERVER SYNTHESIS FOR UNCERTAIN LARGE-SCALE SYSTEMS BY THE RICCATI EQUATION APPROACH
    WANG, WJ
    CHENG, CF
    IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1992, 139 (01): : 72 - 78
  • [3] SINGULAR PERTURBATIONS AND LARGE-SCALE SYSTEMS
    GRUJIC, LT
    INTERNATIONAL JOURNAL OF CONTROL, 1979, 29 (01) : 159 - 169
  • [4] Exponential integrators for large-scale stiff Riccati differential equations
    Li, Dongping
    Zhang, Xiuying
    Liu, Renyun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389 (389)
  • [5] SOLVING LARGE-SCALE NONSYMMETRIC ALGEBRAIC RICCATI EQUATIONS BY DOUBLING
    Li, Tiexiang
    Chu, Eric King-Wah
    Kuo, Yueh-Cheng
    Lin, Wen-Wei
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (03) : 1129 - 1147
  • [6] A POD PROJECTION METHOD FOR LARGE-SCALE ALGEBRAIC RICCATI EQUATIONS
    Kramer, Boris
    Singler, John R.
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2016, 6 (04): : 413 - 435
  • [7] ANALYSIS OF KRYLOV SUBSPACE APPROXIMATION TO LARGE-SCALE DIFFERENTIAL RICCATI EQUATIONS
    Koskela, Antti
    Mena, Hermann
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2020, 52 : 431 - 454
  • [8] Analysis of krylov subspace approximation to large-scale differential riccati equations
    Koskela A.
    Mena H.
    Electronic Transactions on Numerical Analysis, 2020, 52 : 431 - 454
  • [9] Parallel solution of large-scale and sparse generalized algebraic Riccati equations
    Badia, Jose M.
    Benner, Peter
    Mayo, Rafael
    Quintana-Orti, Enrique S.
    EURO-PAR 2006 PARALLEL PROCESSING, 2006, 4128 : 710 - 719
  • [10] On two numerical methods for the solution of large-scale algebraic Riccati equations
    Simoncini, Valeria
    Szyld, Daniel B.
    Monsalve, Marlliny
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (03) : 904 - 920