Comparison of ship detection algorithms in spaceborne SAR imagery

被引:0
|
作者
Chen, P [1 ]
Huang, WG [1 ]
Yang, JS [1 ]
Fu, B [1 ]
Lou, XL [1 ]
Shi, AQ [1 ]
机构
[1] SOA, Inst Oceanog 2, Lab Ocean Dynam Proc & Satellite, Hangzhou, Peoples R China
关键词
SAR; ship detection; CFAR;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The algorithms discussed in this paper are three Constant False Alarm Rate (CFAR) models, which include the Probabilistic Neural Network(PNN) model, the K-Gamma model and the double parameters model. The SAR data utilized in the paper include ERS-2, ENVISAT and Radarsat SAR data. The data are applied in ship detection experiments and the results of ship detection of three models are compared. The results show that the PNN model's applicability is the best. The performance of PNN model in ERS and ENVISAT SAR data is better than the K-Gamma model. The K-Gamma model can only do well in Radarsat SAR data. The double parameters model can fit local distribution of SAR image in the sea.
引用
收藏
页码:1750 / 1752
页数:3
相关论文
共 50 条
  • [1] An Adaptive Ship Detection Scheme for Spaceborne SAR Imagery
    Leng, Xiangguang
    Ji, Kefeng
    Zhou, Shilin
    Xing, Xiangwei
    Zou, Huanxin
    [J]. SENSORS, 2016, 16 (09):
  • [2] A NOVEL ADAPTIVE SHIP DETECTION METHOD FOR SPACEBORNE SAR IMAGERY
    Leng, Xiangguang
    Ji, Kefeng
    Fan, Qingju
    Zhou, Shilin
    Zou, Huanxin
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 108 - 111
  • [3] SHIP DETECTION IN SAR IMAGERY: A COMPARISON STUDY
    Iervolino, Pasquale
    Guida, Raffaella
    Lumsdon, Parivash
    Janoth, Juergen
    Clift, Melanie
    Minchella, Andrea
    Bianco, Paolo
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2050 - 2053
  • [4] An Analysis of Ship Azimuth Smearing in Spaceborne SAR Imagery
    Chiu, Shen
    [J]. 2017 EUROPEAN RADAR CONFERENCE (EURAD), 2017, : 9 - 12
  • [5] Oil slick detection by SAR imagery: algorithms comparison
    Girard-Ardhuin, F
    Mercier, G
    Collard, F
    Garello, R
    [J]. IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 4726 - 4729
  • [6] Comparison of probability statistics for automated ship detection in SAR imagery
    Henschel, MD
    Rey, MT
    Campbell, JWM
    Petrovic, D
    [J]. APPLICATIONS OF PHOTONIC TECHNOLOGY 3, 1998, 3491 : 986 - 991
  • [7] Ship detection in RADARSAT SAR imagery
    Jiang, QS
    Wang, SR
    Ziou, D
    El Zaart, A
    Rey, MT
    Benie, GB
    Henschel, M
    [J]. 1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 4562 - 4566
  • [8] Features of merchant ship in high-resolution spaceborne SAR imagery
    Chen, Peng
    Huang, Weigen
    Yang, Jingsong
    Fu, Bin
    [J]. GEOINFORMATICS 2006: REMOTELY SENSED DATA AND INFORMATION, 2006, 6419
  • [9] A Hierarchical Convolution Neural Network (CNN)-Based Ship Target Detection Method in Spaceborne SAR Imagery
    Wang, Jun
    Zheng, Tong
    Lei, Peng
    Bai, Xiao
    [J]. REMOTE SENSING, 2019, 11 (06)
  • [10] LOCATION OF SPACEBORNE SAR IMAGERY
    CURLANDER, JC
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1982, 20 (03): : 359 - 364