Oceanic eddy detection and lifetime forecast using machine learning methods

被引:49
|
作者
Ashkezari, Mohammad D. [1 ]
Hill, Christopher N. [1 ]
Follett, Christopher N. [1 ]
Forget, Gael [1 ]
Follows, Michael J. [1 ]
机构
[1] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
关键词
ocean; eddy; machine learning; eddy lifetime; remote sensing; ALTIMETRY; SEA; TRANSPORT;
D O I
10.1002/2016GL071269
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We report a novel altimetry-based machine learning approach for eddy identification and characterization. The machine learning models use daily maps of geostrophic velocity anomalies and are trained according to the phase angle between the zonal and meridional components at each grid point. The trained models are then used to identify the corresponding eddy phase patterns and to predict the lifetime of a detected eddy structure. The performance of the proposed method is examined at two dynamically different regions to demonstrate its robust behavior and region independency.
引用
收藏
页码:12234 / 12241
页数:8
相关论文
共 50 条
  • [1] Improved frost forecast using machine learning methods
    Rozante, José Roberto
    Ramirez, Enver
    Ramirez, Diego
    Rozante, Gabriela
    [J]. Artificial Intelligence in Geosciences, 2023, 4 : 164 - 181
  • [2] Machine learning methods to forecast temperature in buildings
    Mateo, Fernando
    Jose Carrasco, Juan
    Sellami, Abderrahim
    Millan-Giraldo, Monica
    Dominguez, Manuel
    Soria-Olivas, Emilio
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (04) : 1061 - 1068
  • [3] Machine Learning Methods for Seismic Hazards Forecast
    Gitis, Valeri G.
    Derendyaev, Alexander B.
    [J]. GEOSCIENCES, 2019, 9 (07)
  • [4] Application of Three Deep Learning Schemes Into Oceanic Eddy Detection
    Xu, Guangjun
    Xie, Wenhong
    Dong, Changming
    Gao, Xiaoqian
    [J]. FRONTIERS IN MARINE SCIENCE, 2021, 8
  • [5] Oceanic Mesoscale Eddy Detection Method Based on Deep Learning
    Duo, Zijun
    Wang, Wenke
    Wang, Huizan
    [J]. REMOTE SENSING, 2019, 11 (16)
  • [6] Using Machine Learning Methods to Forecast if Solar Flares Will Be Associated with CMEs and SEPs
    Inceoglu, Fadil
    Jeppesen, Jacob H.
    Kongstad, Peter
    Marcano, Nestor J. Hernandez
    Jacobsen, Rune H.
    Karoff, Christoffer
    [J]. ASTROPHYSICAL JOURNAL, 2018, 861 (02):
  • [7] Using Machine Learning Methods to Forecast Air Quality: A Case Study in Macao
    Lei, Thomas M. T.
    Siu, Shirley W., I
    Monjardino, Joana
    Mendes, Luisa
    Ferreira, Francisco
    [J]. ATMOSPHERE, 2022, 13 (09)
  • [8] Jobs Runtime Forecast for JSCC RAS Supercomputers Using Machine Learning Methods
    G. I. Savin
    B. M. Shabanov
    D. S. Nikolaev
    A. V. Baranov
    P. N. Telegin
    [J]. Lobachevskii Journal of Mathematics, 2020, 41 : 2593 - 2602
  • [9] Detection of child depression using machine learning methods
    Haque, Umme Marzia
    Kabir, Enamul
    Khanam, Rasheda
    [J]. PLOS ONE, 2021, 16 (12):
  • [10] Medicare Fraud Detection using Machine Learning Methods
    Bauder, Richard A.
    Khoshgoftaar, Taghi M.
    [J]. 2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2017, : 858 - 865