Robust estimation for ordinal regression

被引:12
|
作者
Croux, C. [1 ]
Haesbroeck, G. [2 ]
Ruwet, C. [2 ]
机构
[1] Katholieke Univ Leuven, Fac Business & Econ, Louvain, Belgium
[2] Univ Liege, Dept Math, Liege, Belgium
关键词
Breakdown point; Diagnostic plot; Influence function; Ordinal regression; Weighted maximum likelihood; Robust distances; GENERALIZED LINEAR-MODELS; LATENT VARIABLE MODELS; LOGISTIC-REGRESSION; BINARY REGRESSION; BOUNDED-INFLUENCE; BREAKDOWN;
D O I
10.1016/j.jspi.2013.04.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Ordinal regression is used for modelling an ordinal response variable as a function of some explanatory variables. The classical technique for estimating the unknown parameters of this model is Maximum Likelihood (ML). The lack of robustness of this estimator is formally shown by deriving its breakdown point and its influence function. To robustify the procedure, a weighting step is added to the Maximum Likelihood estimator, yielding an estimator with bounded influence function. We also show that the loss in efficiency due to the weighting step remains limited. A diagnostic plot based on the Weighted Maximum Likelihood estimator allows to detect outliers of different types in a single plot. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1486 / 1499
页数:14
相关论文
共 50 条
  • [1] Robust regression model for ordinal response
    Yuan, Ao
    Juan, Chongyang
    Tan, Ming T.
    STATISTICS AND ITS INTERFACE, 2021, 14 (03) : 243 - 254
  • [2] Convolutional Ordinal Regression Forest for Image Ordinal Estimation
    Zhu, Haiping
    Shan, Hongming
    Zhang, Yuheng
    Che, Lingfu
    Xu, Xiaoyang
    Zhang, Junping
    Shi, Jianbo
    Wang, Fei-Yue
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (08) : 4084 - 4095
  • [3] Robust ordinal regression in preference learning and ranking
    Corrente, Salvatore
    Greco, Salvatore
    Kadzinski, Milosz
    Slowinski, Roman
    MACHINE LEARNING, 2013, 93 (2-3) : 381 - 422
  • [4] Extreme ranking analysis in robust ordinal regression
    Kadzinski, Milosz
    Greco, Salvatore
    Slowinski, Roman
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2012, 40 (04): : 488 - 501
  • [5] ELECTREGKMS: Robust ordinal regression for outranking methods
    Greco, Salvatore
    Kadzinski, Milosz
    Mousseau, Vincent
    Slowinski, Roman
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2011, 214 (01) : 118 - 135
  • [6] Using Indifference Information in Robust Ordinal Regression
    Branke, Juergen
    Corrente, Salvatore
    Greco, Salvatore
    Gutjahr, Walter J.
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PT II, 2015, 9019 : 205 - 217
  • [7] Robust ordinal regression in preference learning and ranking
    Salvatore Corrente
    Salvatore Greco
    Miłosz Kadziński
    Roman Słowiński
    Machine Learning, 2013, 93 : 381 - 422
  • [8] Robust ordinal regression induced by lp -centroid
    Tian, Qing
    Zhang, Wenqiang
    Wang, Liping
    Chen, Songcan
    Yin, Hujun
    NEUROCOMPUTING, 2018, 313 : 184 - 195
  • [9] Robust ordinal regression for subsets comparisons with interactions
    Gilbert, Hugo
    Ouaguenouni, Mohamed
    Ozturk, Meltem
    Spanjaard, Olivier
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2025, 320 (01) : 146 - 159
  • [10] Robust ordinal regression for decision under risk and uncertainty
    Corrente S.
    Greco S.
    Matarazzo B.
    Słowiński R.
    Journal of Business Economics, 2016, 86 (1-2) : 55 - 83