Detection of Pathological Voices Using Discrete Wavelet Transform and Artificial Neural Networks

被引:0
|
作者
Shia, S. Emerald [1 ]
Jayasree, T. [2 ]
机构
[1] Cape Inst Technol, ECE Dept, Levengipuram, India
[2] Govt Coll Engn, ECE Dept, Tirunelveli, India
关键词
DWT-Discrete Wavelet Transform; FFNN-Feed Forward Neural Network; SVD-Sarbrueken Voice Data Base; IDENTIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aim of this work is to develop an efficient voice disorder detection system using Discrete Wavelet Transform(DWT) and Feed Forward Neural Network (FFNN). In this experimental implementation the normal and abnormal utterances taken from Saarbrueken Voice Database (SVD) are subjected to 1-D Discrete Wavelet Decomposition and the energy of wavelet subband coefficients are computed. FFNN is finally used as a classifier to discriminate pathological voices from normal samples. The proposed system achieves 93.3% accuracy.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Iris recognition using discrete wavelet transform and artificial neural networks
    Alim, OA
    Sharkas, M
    [J]. Proceedings of the 46th IEEE International Midwest Symposium on Circuits & Systems, Vols 1-3, 2003, : 337 - 340
  • [2] An Approach to Detection of High Impedance Fault Using Discrete Wavelet Transform and Artificial Neural Networks
    Vahidi, Behrooz
    Ghaffarzadeh, Navid
    Hosseinian, Sayed Hosein
    Ahadi, Seyed Mohammad
    [J]. SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL, 2010, 86 (04): : 203 - 215
  • [3] High Impedance Arcing Fault Detection in MV Networks Using Discrete Wavelet Transform and Artificial Neural Networks
    Vijayachandran, Gayathri
    Mathew, Bobin. K.
    [J]. 2012 INTERNATIONAL CONFERENCE ON GREEN TECHNOLOGIES (ICGT), 2012, : 89 - 98
  • [4] Gear fault detection using artificial neural networks with discrete wavelet transform and principal component analysis
    Er-raoudi, M.
    Diany, M.
    Aissaoui, H.
    Mabrouki, M.
    [J]. JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES, 2016, 10 (02) : 2006 - 2019
  • [5] Efficient wind speed forecasting using discrete wavelet transform and artificial neural networks
    Berrezzek, Farid
    Khelil, Khaled
    Bouadjila, Tahar
    [J]. Revue d'Intelligence Artificielle, 2019, 33 (06) : 447 - 452
  • [6] Classification of Healthy and Pathological Voices Using Artificial Neural Networks
    Ileri, Ramis
    Latifoglu, Fatma
    Guven, Aysegul
    [J]. 2019 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2019, : 94 - 97
  • [7] Photovoltaic system faults diagnosis using discrete wavelet transform based artificial neural networks
    Bengharbi, Abdelkader Azzeddine
    Laribi, Saadi Souad
    Allaoui, Tayeb
    Mimouni, Amina
    [J]. ELECTRICAL ENGINEERING & ELECTROMECHANICS, 2022, (06) : 42 - 47
  • [8] Modelling evapotranspiration using discrete wavelet transform and neural networks
    Partal, Turgay
    [J]. HYDROLOGICAL PROCESSES, 2009, 23 (25) : 3545 - 3555
  • [9] High impedance fault detection methodology using wavelet transform and artificial neural networks
    Baqui, Ibrahem
    Zamora, Inmaculada
    Mazon, Javier
    Buigues, Garikoitz
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2011, 81 (07) : 1325 - 1333
  • [10] Power System Fault Detection and Classification Using Wavelet Transform and Artificial Neural Networks
    Malla, Paul
    Coburn, Will
    Keegan, Kevin
    Yu, Xiao-Hua
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT II, 2019, 11555 : 266 - 272