共 50 条
Strain-tunable magnetic and electronic properties of monolayer CrI3
被引:147
|作者:
Wu, Zewen
[1
]
Yu, Jin
[2
,3
]
Yuan, Shengjun
[1
,2
]
机构:
[1] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Hubei, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China
[3] Radboud Univ Nijmegen, Theory Condensed Matter, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
基金:
国家重点研发计划;
关键词:
INTRINSIC FERROMAGNETISM;
CAPACITY;
CRYSTAL;
RISE;
D O I:
10.1039/c8cp07067a
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Two-dimensional CrI3 has attracted much attention as it is reported to be a ferromagnetic semiconductor with a Curie temperature of around 45 K. By performing first-principles calculations, we find that the magnetic ground state of CrI3 is variable under biaxial strain. Our theoretical investigations show that the ground state of monolayer CrI3 is ferromagnetic under compression, but becomes antiferromagnetic under tension. Particularly, the transition occurs under a feasible in-plane strain of around 1.8%. Accompanied by the transition of the magnetic ground state, CrI3 undergoes a transition from magnetic-metal to half-metal to half-semiconductor to spin-relevant semiconductor when the strain varies from similar to 15% to 10%. We attribute these transitions to the variation of the d-orbitals of Cr atoms and the p-orbitals of I atoms. Generally, we report a series of magnetic and electronic phase transitions in strained CrI3, which will help both theoretical and experimental researchers in further understanding the tunable electronic and magnetic properties of CrI3 and its analogs.
引用
收藏
页码:7750 / 7755
页数:6
相关论文