Altermatic number of categorical product of graphs

被引:1
|
作者
Alishahi, Meysam [1 ]
Hajiabolhassan, Hossein [2 ,3 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, Shahrood, Iran
[2] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
[3] Inst Res Fundamental Sci, Sch Comp Sci, Tehran, Iran
基金
欧洲研究理事会;
关键词
Chromatic number; Hedetniemi's conjecture; Altermatic number; Strong altermatic number; CHROMATIC NUMBER; HEDETNIEMIS CONJECTURE;
D O I
10.1016/j.disc.2018.02.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove some relaxations of Hedetniemi's conjecture in terms of altermatic number and strong altermatic number of graphs, two combinatorial parameters introduced by the present authors Alishahi and Hajiabolhassan (2015) providing two sharp lower bounds for the chromatic number of graphs. In terms of these parameters, we also introduce some sharp lower bounds for the chromatic number of the categorical product of two graphs. Using these lower bounds, we present some new families of graphs supporting Hedetniemi's conjecture. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1316 / 1324
页数:9
相关论文
共 50 条
  • [1] The Fractional Chromatic Number Of The Categorical Product Of Graphs
    Claude Tardif
    [J]. Combinatorica, 2005, 25 : 625 - 632
  • [2] The fractional chromatic number of the categorical product of graphs
    Tardif, C
    [J]. COMBINATORICA, 2005, 25 (05) : 625 - 632
  • [3] CATEGORICAL PRODUCT OF GRAPHS
    MILLER, DJ
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (06): : 1511 - &
  • [4] ZERO-SUM FLOW NUMBER OF CATEGORICAL AND STRONG PRODUCT OF GRAPHS
    Rashid, Muhammad Aamer
    Ahmad, Sarfraz
    Hanif, Muhammad Farhan
    Siddiqui, Muhammad Kamran
    Naeem, Muhammad
    [J]. TRANSACTIONS ON COMBINATORICS, 2020, 9 (04) : 181 - 199
  • [5] Vector coloring the categorical product of graphs
    Godsil, Chris
    Roberson, David E.
    Rooney, Brendan
    Samal, Robert
    Varvitsiotis, Antonios
    [J]. MATHEMATICAL PROGRAMMING, 2020, 182 (1-2) : 275 - 314
  • [6] Vector coloring the categorical product of graphs
    Chris Godsil
    David E. Roberson
    Brendan Rooney
    Robert Šámal
    Antonios Varvitsiotis
    [J]. Mathematical Programming, 2020, 182 : 275 - 314
  • [7] On maximum independent set of categorical product and ultimate categorical ratios of graphs
    Hon, Wing-Kai
    Kloks, Ton
    Liu, Ching-Hao
    Liu, Hsiang-Hsuan
    Poon, Sheung-Hung
    Wang, Yue-Li
    [J]. THEORETICAL COMPUTER SCIENCE, 2015, 588 : 81 - 95
  • [8] Codes from graphs related to the categorical product of triangular graphs and Kn
    Kumwenda, Khumbo
    Mwambene, Eric
    [J]. 2010 IEEE INFORMATION THEORY WORKSHOP (ITW), 2010,
  • [9] THE BINDING NUMBER OF PRODUCT GRAPHS
    WANG, JF
    TIAN, SL
    LIU, JQ
    [J]. LECTURE NOTES IN MATHEMATICS, 1984, 1073 : 119 - 128
  • [10] ON THE CHROMATIC NUMBER OF THE PRODUCT OF GRAPHS
    DUFFUS, D
    SANDS, B
    WOODROW, RE
    [J]. JOURNAL OF GRAPH THEORY, 1985, 9 (04) : 487 - 495