Spatial-Temporal Recurrent Neural Network for Anomalous Trajectories Detection

被引:6
|
作者
Cheng, Yunyao [1 ,2 ]
Wu, Bin [1 ,2 ]
Song, Li [1 ,2 ]
Shi, Chuan [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
[2] Beijing Key Lab Intelligent Telecommun Software &, Beijing, Peoples R China
关键词
Anomaly detection; Recurrent Neural Network; Spatial-temporal sequence;
D O I
10.1007/978-3-030-35231-8_41
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aiming to improve the quality of taxi service and protect the interests in passengers, anomalous trajectory detection attracts increasing attention. Most of the existing methods concentrate on the coordinate information about trajectories and learn the similarities between anomalous trajectories from a large number of coordinate sequences. These methods ignore the relationship of spatial-temporal and ignore the particularity of the whole trajectory. Through data analysis, we find that there are significant differences between normal trajectories and anomalous trajectories in terms of spatial-temporal characteristic. Meanwhile Recurrent Neural Network can use trajectory embedding to capture the sequential information on the trajectory. Consequently, we propose an efficient method named Spatial-Temporal Recurrent Neural Network (ST-RNN) using coordinate sequence and spatial-temporal sequence. ST-RNN combines the advantages of the Recurrent Neural Network (RNN) in learning sequence information and adds attention mechanism to the RNN to improve the performance of the model. The application of Spatial-Temporal Laws in anomalous trajectory detection also achieves a positive influence. Several experiments on a real-world dataset demonstrate that the proposed ST-RNN achieves state-of-the-art performance in most cases.
引用
收藏
页码:565 / 578
页数:14
相关论文
共 50 条
  • [1] Spatial-Temporal Recurrent Neural Network for Emotion Recognition
    Zhang, Tong
    Zheng, Wenming
    Cui, Zhen
    Zong, Yuan
    Li, Yang
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (03) : 839 - 847
  • [2] A Spatial-Temporal Recurrent Neural Network for Video Saliency Prediction
    Zhang, Kao
    Chen, Zhenzhong
    Liu, Shan
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 572 - 587
  • [3] SPRNN: A spatial-temporal recurrent neural network for crowd flow prediction
    Tang, Gaozhong
    Li, Bo
    Dai, Hong-Ning
    Zheng, Xi
    [J]. INFORMATION SCIENCES, 2022, 614 : 19 - 34
  • [4] Mask Adaptive Spatial-Temporal Recurrent Neural Network for Traffic Forecasting
    Hu, Xingbang
    Zhang, Shuo
    Zhang, Wenbo
    Huang, Hejiao
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT V, PAKDD 2024, 2024, 14649 : 259 - 270
  • [5] Spatial-Temporal Neural Network for P300 Detection
    Zhang, Zhen
    Yu, Xiaoyan
    Rong, Xianwei
    Iwata, Makoto
    [J]. IEEE ACCESS, 2021, 9 : 163441 - 163455
  • [6] Graph Neural Network for Fraud Detection via Spatial-Temporal Attention
    Cheng, Dawei
    Wang, Xiaoyang
    Zhang, Ying
    Zhang, Liqing
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (08) : 3800 - 3813
  • [7] An Efficient Spatial-Temporal Convolution Recurrent Neural Network Surrogate Model for History Matching
    Ma, Xiaopeng
    Zhang, Kai
    Wang, Jian
    Yao, Chuanjin
    Yang, Yongfei
    Sun, Hai
    Yao, Jun
    [J]. SPE JOURNAL, 2022, 27 (02): : 1160 - 1175
  • [8] Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data
    McDermott, Patrick L.
    Wikle, Christopher K.
    [J]. ENTROPY, 2019, 21 (02)
  • [9] Point target detection based on deep spatial-temporal convolution neural network
    Li Mao
    Lin Zai-Ping
    Fan Jian-Peng
    Sheng Wei-Doug
    Li Jun
    An Wei
    Li Xin-Lei
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2021, 40 (01) : 122 - 132
  • [10] Localised Adaptive Spatial-Temporal Graph Neural Network
    Duan, Wenying
    He, Xiaoxi
    Zhou, Zimu
    Thiele, Lothar
    Rao, Hong
    [J]. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2023, : 448 - 458