DETECTION OF FLOODED AREAS FROM MULTITEMPORAL SAR IMAGES

被引:0
|
作者
Kalpana, N. [1 ]
Sivasankar, A. [1 ]
机构
[1] Anna Univ, ECE, Reg Campus, Madurai, Tamil Nadu, India
关键词
Data fusion; flood detection; image enhancement; multi temporal synthetic aperture radar (SAR) imagery; RGB composition;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Multi temporal synthetic aperture radar images are available, precise calibration and perfect spatial register are required to get a useful image for displaying changes that contain occurred. SAR calibration is a extremely complex and sensitive problem; a few errors may persist after calibration that interferes with subsequent steps in the data fusion and visualization process. Because of the non-Gaussian model of radar backscattering, traditional image pre processing procedures cannot be used here. To solve this problem "cross-calibration/normalization," method can be used. In image enhancement and the numerical comparison of many image takes together with data fusion and visualization processes. The proposed processing which contain filtering, histogram truncation, and equalization steps and region growing and merging algorithm applied in an adaptive way to the images. RGB composition is used to combining an pre & post flood image or identify an flooded areas.
引用
收藏
页码:538 / 542
页数:5
相关论文
共 50 条
  • [1] A New Method for Cross-Normalization and Multitemporal Visualization of SAR Images for the Detection of Flooded Areas
    Dellepiane, Silvana G.
    Angiati, Elena
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (07): : 2765 - 2779
  • [2] An information-theoretic feature for identifying changes in multitemporal SAR images: An evaluation for the detection of flooded areas
    Aiazzi, Bruno
    Alparone, Luciano
    Barontia, Stefano
    Moramarco, Tornmaso
    Pandolfo, Claudia
    Stelluti, Marco
    SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES IX, 2007, 6746
  • [3] MULTITEMPORAL POLARIMETRIC SAR IMAGES FOR URBAN AREAS
    Koeniguer, E. Colin
    Weissgerber, F.
    Trouve, N.
    Nicolas, J-M.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 231 - 234
  • [4] Unsupervised Change Detection in Multitemporal SAR Images Over Large Urban Areas
    Hu, Hongtao
    Ban, Yifang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (08) : 3248 - 3261
  • [5] Usage of multitemporal filtering of SAR images for change detection
    Romero, Rosana
    Marcos, Jesus Sanz
    Carrasco, Daniel
    Moreno, Victoriano
    Valero, Juan Luis
    Lafitte, Marc
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 1955 - +
  • [6] A variational change detection method for multitemporal SAR images
    Chen, Yin
    Cremers, Armin B.
    Cao, Zhiguo
    REMOTE SENSING LETTERS, 2014, 5 (04) : 342 - 351
  • [7] Detection of Multitransition Abrupt Changes in Multitemporal SAR Images
    Dogan, Ozan
    Perissin, Daniele
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (08) : 3239 - 3247
  • [8] Flooded Areas Detection through SAR Images and U-NET Deep Learning Model
    Pech-May, Fernando
    Sanchez-Hernandez, Julio Victor
    Lopez-Gomez, Luis Antonio
    Magana-Govea, Jorge
    Mil-Chontal, Edna Mariel
    COMPUTACION Y SISTEMAS, 2023, 27 (02): : 449 - 458
  • [9] DETECTION OF LAND USE TYPE USING MULTITEMPORAL SAR IMAGES
    Yu, Qiwen
    Xing, Minfeng
    Liu, Xiaofang
    Wang, Long
    Luo, Kaiwei
    Quan, Xingwen
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1534 - 1537
  • [10] Change detection in multitemporal SAR images using MRF models
    Jiang, Liming
    Liao, Mingsheng
    Zhang, Lu
    Lin, Hui
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2006, 31 (04): : 312 - 315