An Application of the Gegenbauer Wavelet Method for the Numerical Solution of the Fractional Bagley-Torvik Equation

被引:66
|
作者
Srivastava, H. M. [1 ,2 ]
Shah, F. A. [3 ]
Abass, R. [3 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Univ Kashmir, Dept Math, South Campus, Anantnag 192101, Jammu & Kashmir, India
关键词
OPERATIONAL MATRIX; ORDER INTEGRATION;
D O I
10.1134/S1061920819010096
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a potentially useful new method based on the Gegenbauer wavelet expansion, together with operational matrices of fractional integral and block-pulse functions, is proposed in order to solve the Bagley-Torvik equation. The Gegenbauer wavelets are generated here by dilation and translation of the classical orthogonal Gegenbauer polynomials. The properties of the Gegenbauer wavelets and the Gegenbauer polynomials are first presented. These functions and their associated properties are then employed to derive the Gegenbauer wavelet operational matrices of fractional integrals. The operational matrices of fractional integrals are utilized to reduce the problem to a set of algebraic equations with unknown coefficients. Illustrative examples are provided to demonstrate the validity and applicability of the method presented here.
引用
收藏
页码:77 / 93
页数:17
相关论文
共 50 条
  • [1] An Application of the Gegenbauer Wavelet Method for the Numerical Solution of the Fractional Bagley-Torvik Equation
    H. M. Srivastava
    F. A. Shah
    R. Abass
    Russian Journal of Mathematical Physics, 2019, 26 : 77 - 93
  • [2] Numerical Method For Fractional Bagley-Torvik Equation
    Ding, Qinxu
    Wong, Patricia J. Y.
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [3] The Numerical Solution of the Bagley-Torvik Equation With Fractional Taylor Method
    Krishnasamy, V. S.
    Razzaghi, M.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (05):
  • [4] Numerical solution of the Bagley-Torvik equation
    Diethelm, K
    Ford, NJ
    BIT NUMERICAL MATHEMATICS, 2002, 42 (03) : 490 - 507
  • [5] Numerical Solution of the Bagley-Torvik Equation
    K. Diethelm
    J. Ford
    BIT Numerical Mathematics, 2002, 42 (3) : 490 - 507
  • [6] A Wavelet Method for Solving Bagley-Torvik Equation
    Wang, Xiaomin
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 102 (02): : 169 - 182
  • [7] Numerical Solution of the Distributed-Order Fractional Bagley-Torvik Equation
    Aminikhah, Hossein
    Sheikhani, Amir Hosein Refahi
    Houlari, Tahereh
    Rezazadeh, Hadi
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (03) : 760 - 765
  • [8] Numerical solution the fractional Bagley-Torvik equation arising in fluid mechanics
    Gulsu, Mustafa
    Ozturk, Yalcin
    Anapali, Ayse
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (01) : 173 - 184
  • [9] Numerical solution of the Bagley-Torvik equation by the Bessel collocation method
    Yuzbasi, Suayip
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (03) : 300 - 312
  • [10] Numerical Solution of the Distributed-Order Fractional Bagley-Torvik Equation
    Hossein Aminikhah
    Amir Hosein Refahi Sheikhani
    Tahereh Houlari
    Hadi Rezazadeh
    IEEE/CAA Journal of Automatica Sinica, 2019, 6 (03) : 760 - 765