ULTRA-SHORT NACELLES FOR LOW FAN PRESSURE RATIO PROPULSORS

被引:0
|
作者
Peters, Andreas [1 ]
Spakovszky, Zoltan S. [1 ]
Lord, Wesley K. [2 ]
Rose, Becky [2 ]
机构
[1] MIT, Gas Turbine Lab, Cambridge, MA 02139 USA
[2] Pratt & Whitney, E Hartford, CT 06118 USA
关键词
FLOW-ANALYSIS; DESIGN; MODEL;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
As the propulsor fan pressure ratio (FPR) is decreased for improved fuel burn, reduced emissions and noise, the fan diameter grows and innovative nacelle concepts with short inlets are required to reduce their weight and drag. This paper addresses the uncharted inlet and nacelle design space for low-FPR propulsors where fan and nacelle are more closely coupled than in current turbofan engines. The paper presents an integrated fan-nacelle design framework, combining a spline-based inlet design tool with a fast and reliable body-force-based approach for the fan rotor and stator blade rows to capture the inlet-fan and fan-exhaust interactions and flow distortion at the fan face. The new capability enables parametric studies of characteristic inlet and nacelle design parameters with a short turn-around time. The interaction of the rotor with a region of high streamwise Mach number at the fan face is identified as the key mechanism limiting the design of short inlets. The local increase in Mach number is due to flow acceleration along the inlet internal surface coupled with a reduction in effective flow area. For a candidate short-Het design with length over diameter ratio L/D = 0.19, the streamwise Mach number at the fan face near the shroud increases by up to 0.16 at cruise and by up to 0.36 at off-design conditions relative to a long-inlet propulsor with L/D = 0.5. As a consequence, the rotor locally operates close to choke resulting in fan efficiency penalties of up to 1.6 % at cruise and 3.9 % at off-design. For inlets with L/D < 0.25, the benefit from reduced nacelle drag is offset by the reduction in fan efficiency, resulting in propulsive efficiency penalties. Based on a parametric inlet study, the recommended inlet L/D is suggested to be between 0.25 and 0.4. The performance of a candidate short inlet with L/D = 0.25 was assessed using full-annulus unsteady RANS simulations at critical design and off-design operating conditions. The candidate design maintains the propulsive efficiency of the baseline case and fuel burn benefits are conjectured due to reductions in nacelle weight and drag compared to an aircraft powered by the baseline propulsor.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Ultrashort Nacelles for Low Fan Pressure Ratio Propulsors
    Peters, Andreas
    Spakovszky, Zoltan S.
    Lord, Wesley K.
    Rose, Becky
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2015, 137 (02):
  • [2] Ultra-short columns for low-pressure ion chromatography
    Jiang, XP
    Zhang, XS
    Liu, MH
    JOURNAL OF CHROMATOGRAPHY A, 1999, 857 (1-2) : 175 - 181
  • [3] Ultra-short columns for low-pressure ion chromatography
    Jiang, Xiaoping
    Zhang, Xinshen
    Liu, Minghua
    Journal of Chromatography A, 1999, 857 (01): : 175 - 181
  • [4] Design of ultra-short throw ratio projection lens
    Bian, Yinxu
    Wang, Heng
    Guo, Tianyi
    Li, Haifeng
    Liu, Xu
    Guangxue Xuebao/Acta Optica Sinica, 2015, 35 (12):
  • [5] Ultra-short waves
    Hill, L
    BRITISH MEDICAL JOURNAL, 1936, 1936 : 1232 - 1232
  • [6] Ultra-short waves
    Turrell, WJ
    BRITISH MEDICAL JOURNAL, 1936, 1936 : 1132 - 1132
  • [7] Ultra-Short Celiac Disease
    Lowe, Anson W.
    Moseley, Richard H.
    GASTROENTEROLOGY, 2016, 150 (05) : 1049 - 1050
  • [8] ULTRA-SHORT LIGHT IMPULSES
    KAISER, W
    UMSCHAU, 1985, 85 (02): : 84 - 88
  • [9] Ultra-short light wavepackets
    Radzewicz, C
    Trippenbach, M
    Band, YB
    Krasinski, JS
    OPTICAL PULSE AND BEAM PROPAGATION, 1999, 3609 : 130 - 140
  • [10] Ultra-short PROMs: clever or not?
    C Zimmermann
    British Journal of Cancer, 2010, 103 : 1477 - 1478