共 50 条
THE PATHOPHYSIOLOGICAL HYPOTHESIS OF HOMOCYSTEINE THIOLACTONE-MEDIATED VASCULAR DISEASE
被引:0
|作者:
Jakubowski, H.
[1
,2
]
机构:
[1] UMDNJ, Int Ctr Publ Hlth, New Jersey Med Sch, Dept Microbiol & Mol Genet, Newark, NJ 07101 USA
[2] Polish Acad Sci, Poznan, Poland
来源:
关键词:
autoantibodies;
atherosclerosis;
CBS;
fibrinogen;
hyperhomocysteinemia;
homocysteine thiolactone hypothesis;
immune activation;
MTHFR;
protein N-homocysteinylation;
thrombosis;
D O I:
暂无
中图分类号:
Q4 [生理学];
学科分类号:
071003 ;
摘要:
Accumulating evidence suggests that homocysteine (Hcy) metabolite, the thioester Hcy-thiolactone, plays an important role in atherothrombosis. Hcy-thiolactone is a product of an error-editing reaction in protein biosynthesis which forms when Hcy is mistakenly selected by methionyl-tRNA synthetase. The thioester chemistry of Hcy-thiolactone underlies its ability to from isopeptide bonds with protein lysine residues, which impairs or alters protein's function. Protein targets for the modification by Hcy-thiolactone include fibrinogen, low-density lipoprotein, high-density lipoprotein, albumin, hemoglobin, and ferritin. Pathophysiological consequences of protein N-homocysteinylation include protein and cell damage, activation of an adaptive immune response and synthesis of auto-antibodies against N-Hcy-proteins, and enhanced thrombosis caused by N-Hcy-fibrinogen. Recent development of highly sensitive chemical and immunohistochemical assays has allowed verification of the hypothesis that the Hcy-thiolactone pathway contributes to pathophysiology of the vascular system, in particular of the prediction that conditions predisposing to atherosclerosis, Such as genetic or dietary hyperhomocysteinemia, lead to elevation of Hcy-thiolactone and N-Hcy-protein. This prediction has been confirmed in vivo both in humans and in mice. For example, plasma Hcy-thiolactone was found to be elevated 59-72-fold in human patients with hyperhomocysteinemia secondary to mutations in methylenetetrahydrofolate reductase (MTHFR) or cystathionine beta-synthase (CBS) genes. Plasma N-Hcy-protein levels are elevated 24-30-fold ill MTHFR- or CBS-deficiency, both in human patients and in mice. Plasma and urinary Hcy-thiolactone and plasma N-Hcy-protein levels are also elevated up to 30-fold in mice fed a hyperhomocysteinemic (1.5% methionine) diet. Furthermore, plasma levels of pro-thromobogenic N-Hcy-fibrinogen were elevated in human CBS deficiency, which explains increased atherothrombosis observed in CBS-deficient patients. We also observed increased immunohistochemical staining for N-Hcy-protein in aortic lesions from ApoE-deficient mice with hyperhomocysteinemia induced by a high methionine diet, relative to the mice fed a normal chow diet. We conclude that genetic or dietary hyperhomocysteinemia significantly elevates proatherothrombotic metabolites Hcy-thiolactone and N-Hcy-proteins in humans and mice.
引用
收藏
页码:155 / 167
页数:13
相关论文