Linear maps preserving numerical radius of tensor products of matrices

被引:7
|
作者
Fosner, Ajda [1 ]
Huang, Zejun [2 ]
Li, Chi-Kwong [3 ,4 ]
Sze, Nung-Sing [2 ]
机构
[1] Univ Primorska, Fac Management, SI-6104 Koper, Slovenia
[2] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[3] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[4] Univ Hong Kong, Dept Math, Pokfulam, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Complex matrix; Linear preserver; Numerical range; Numerical radius; Tensor product;
D O I
10.1016/j.jmaa.2013.05.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let m, n >= 2 be positive integers. Denote by M-m the set of m x m complex matrices and by w(X) the numerical radius of a square matrix X. Motivated by the study of operations on bipartite systems of quantum states, we show that a linear map phi : M-mn -> M-mn satisfies w(phi(A circle times B)) = w (A circle times B) for all A is an element of M-m, and B is an element of M-n if and only if there is a unitary matrix U is an element of M-mn and a complex unit xi such that phi(A circle times B) = xi U(phi(1)(A) circle times phi(2)(B))U* for all A is an element of M-m and B is an element of M-n, where phi(k) is the identity map or the transposition map X bar right arrow X-t for k = 1, 2, and the maps phi(1) and phi(2) will be of the same type if m, n >= 3. In particular, if m, n >= 3, the map corresponds to an evolution of a closed quantum system (under a fixed unitary operator), possibly followed by a transposition. The results are extended to multipartite systems. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:183 / 189
页数:7
相关论文
共 50 条
  • [1] Linear maps preserving the higher numerical ranges of tensor products of matrices
    Fosner, Ajda
    Huang, Zejun
    Li, Chi-Kwong
    Poon, Yiu-Tung
    Sze, Nung-Sing
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (06): : 776 - 791
  • [2] Linear maps preserving the polynomial numerical radius of matrices
    Costara, Constantin
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 595 : 63 - 71
  • [3] Linear maps preserving idempotents of tensor products of matrices
    Zheng, Baodong
    Xu, Jinli
    Fosner, Ajda
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 470 : 25 - 39
  • [4] Linear maps preserving rank of tensor products of matrices
    Zheng, Baodong
    Xu, Jinli
    Fosner, Ajda
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (02): : 366 - 376
  • [5] Linear maps preserving determinant of tensor products of Hermitian matrices
    Ding, Yuting
    Fosner, Ajda
    Xu, Jinli
    Zheng, Baodong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) : 1139 - 1153
  • [6] Linear maps preserving (p,k) -norms of tensor products of matrices
    Huang, Zejun
    Sze, Nung-Sing
    Zheng, Run
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2023,
  • [7] Linear maps preserving r-potents of tensor products of matrices
    Xu, Jinli
    Fosner, Ajda
    Zheng, Baodong
    Ding, Yuting
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 520 : 67 - 76
  • [8] Linear Maps on Upper Triangular Matrices Spaces Preserving Idempotent Tensor Products
    Yang, Li
    Zhang, Wei
    Xu, Jinli
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [9] LINEAR MAPS PRESERVING TENSOR PRODUCTS OF RANK-ONE HERMITIAN MATRICES
    Xu, Jinli
    Zheng, Baodong
    Fosner, Ajda
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 98 (03) : 407 - 428
  • [10] LINEAR MAPS PRESERVING KY FAN NORMS AND SCHATTEN NORMS OF TENSOR PRODUCTS OF MATRICES
    Fosner, Ajda
    Huang, Zejun
    Li, Chi-Kwong
    Sze, Nung-Sing
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (02) : 673 - 685