An optimal control theory for nonlinear optimization

被引:7
|
作者
Ross, I. M. [1 ]
机构
[1] Naval Postgrad Sch, Control & Optimizat, Monterey, CA 93943 USA
关键词
Karush-Kuhn-Tucker conditions; Transversality conditions; Global convergence; Global asymptotic controllability; Merit function; Control Lyapunov function; SYSTEMS;
D O I
10.1016/j.cam.2018.12.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Karush-Kuhn-Tucker conditions for a given nonlinear programming problem are generated as the transversality conditions of an optimal control problem. The directional derivatives of the objective- and constraint-functions supply the vector fields for the optimal control problem with the search vector as the control variable. Zero-Hamiltonian trajectories along the steepest descent of control Lyapunov functions provide optimal optimization algorithms. The optimality of the algorithm also depends upon the choice of a metric for the finite dimensional control space. Many well-known algorithms - such as Newton's method, the first-order Lagrangian method, the steepest descent method and Richardson's method, to name a few - are derived by minimizing the Lie derivative of a quadratic control Lyapunov function. Merit functions in optimization may also be generated using the concept of a control Lyapunov function. These results suggest that optimal control principles hold the potential for a unified theory for optimization. Published by Elsevier B.V.
引用
收藏
页码:39 / 51
页数:13
相关论文
共 50 条
  • [1] Optimal Control of Nonlinear Elliptic PDEs - Theory and Optimization Methods
    Coletsos, J.
    Kokkinis, B.
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2013, 2014, 8353 : 81 - 89
  • [2] Optimization in nonlinear optimal control problems
    Luus, R
    [J]. 6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XII, PROCEEDINGS: INDUSTRIAL SYSTEMS AND ENGINEERING II, 2002, : 137 - 142
  • [3] Generalization of Optimal Control Theory: Linear and Nonlinear Control
    Yang, J.N.
    Li, Z.
    Vongchavalitkul, S.
    [J]. Journal of Engineering Mechanics, 1994, 120 (02) : 266 - 283
  • [4] GENERALIZATION OF OPTIMAL-CONTROL THEORY - LINEAR AND NONLINEAR CONTROL
    YANG, JN
    LI, Z
    VONGCHAVALITKUL, S
    [J]. JOURNAL OF ENGINEERING MECHANICS-ASCE, 1994, 120 (02): : 266 - 283
  • [5] Deterministic Global Optimization in Nonlinear Optimal Control Problems
    William R. Esposito
    Christodoulos A. Floudas
    [J]. Journal of Global Optimization, 2000, 17 : 97 - 126
  • [6] CasADi: a software framework for nonlinear optimization and optimal control
    Joel A. E. Andersson
    Joris Gillis
    Greg Horn
    James B. Rawlings
    Moritz Diehl
    [J]. Mathematical Programming Computation, 2019, 11 : 1 - 36
  • [7] GLOBAL OPTIMIZATION APPROACH TO NONLINEAR OPTIMAL-CONTROL
    ROSEN, O
    LUUS, R
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 73 (03) : 547 - 562
  • [8] CasADi: a software framework for nonlinear optimization and optimal control
    Andersson, Joel A. E.
    Gillis, Joris
    Horn, Greg
    Rawlings, James B.
    Diehl, Moritz
    [J]. MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) : 1 - 36
  • [9] Deterministic global optimization in nonlinear optimal control problems
    Esposito, WR
    Floudas, CA
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2000, 17 (1-4) : 97 - 126
  • [10] LETS APPLY OPTIMAL CONTROL THEORY AND NONLINEAR ANALYSIS
    MOHLER, RR
    [J]. POWER REACTOR TECHNOLOGY, 1966, 9 (04): : 169 - &