Extending the von Bertalanffy growth model using explanatory variables

被引:61
|
作者
Kimura, Daniel K. [1 ]
机构
[1] NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Seattle, WA 98115 USA
关键词
D O I
10.1139/F08-091
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
von Bertalanffy parameters are usually estimated for a species, perhaps by sex, in some well-defined geographical area. An alternative way to estimate von Bertalanffy parameters is to model them in a general fixed-effects nonlinear model. For this model, the length of the ith individual is modeled as y(i) = f(phi, t(i), x(i)) + epsilon(i), where y(i) is the length and t(i) is the age of the ith specimen at the time of sampling, phi are the unknown parameters required to model von Bertalanffy growth, and x(i) are covariates associated with the ith specimen that minimally contain sex information (x(i)), but may also contain additional covariates. Standard nonlinear least squares and associated likelihood methods can be used to estimate parameters for this model. For Pacific ocean perch (Sebastes alutus), we model the effect that depth of collection has on estimated von Bertalanffy growth parameters: for sablefish (Anoplopoma fimbria), we model the effects due to latitude of collection: and for walleye pollock (Theragra chalcogramma) in the eastern Bering Sea, we model the effects due to variations in year classes. Results illustrate how modeling von Bertalanffy growth parameters directly using explanatory variables can be used to describe how growth relates to geographic, environmental, or biological factors.
引用
收藏
页码:1879 / 1891
页数:13
相关论文
共 50 条
  • [1] On the exponent in the Von Bertalanffy growth model
    Renner-Martin, Katharina
    Brunner, Norbert
    Kuehleitner, Manfred
    Nowak, Werner Georg
    Scheicher, Klaus
    [J]. PEERJ, 2018, 6
  • [2] von Bertalanffy growth model in a random environment
    Prajneshu
    Venugopalan, R
    [J]. CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 1999, 56 (06) : 1026 - 1030
  • [3] ON VON BERTALANFFY GROWTH CURVE
    VONBERTALANFFY, L
    [J]. GROWTH, 1966, 30 (01): : 123 - +
  • [4] Statistical analysis of an alternative von Bertalanffy model for tree growth
    Oyamakin, S. O.
    Chukwu, A. U.
    [J]. JOURNAL OF COUPLED SYSTEMS AND MULTISCALE DYNAMICS, 2014, 2 (03) : 157 - 163
  • [5] ACCOUNTING FOR INDIVIDUAL VARIABILITY IN THE VON BERTALANFFY GROWTH-MODEL
    WANG, YG
    THOMAS, MR
    [J]. CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 1995, 52 (07) : 1368 - 1375
  • [6] The multiplicative heteroscedastic Von Bertalanffy model
    Ribeiro Diniz, Carlos Alberto
    Louiada-Neto, Francisco
    Martins Morita, Lia Hanna
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2012, 26 (01) : 71 - 81
  • [7] Interpreting the von Bertalanffy model of somatic growth in fishes: the cost of reproduction
    Lester, NP
    Shuter, BJ
    Abrams, PA
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2004, 271 (1548) : 1625 - 1631
  • [8] von Bertalanffy stochastic differential equation growth model with multiplicative noise
    Ghosh, Himadri
    Prajneshu
    [J]. JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2018, 21 (08): : 1407 - 1417
  • [9] Fitting of von Bertalanffy growth model: Stochastic differential equation approach
    Prajneshu
    Ghosh, Himadri
    Pandey, N. N.
    [J]. INDIAN JOURNAL OF FISHERIES, 2017, 64 (03): : 24 - 28
  • [10] Ulam type stability for von Bertalanffy growth model with Allee effect
    Kondo, Masumi
    Onitsuka, Masakazu
    [J]. Mathematical Biosciences and Engineering, 2024, 21 (03) : 4698 - 4723