Topological symmetry groups of complete graphs in the 3-sphere

被引:16
|
作者
Flapan, E [1 ]
Naimi, R
Tamvakis, H
机构
[1] Pomona Coll, Dept Math, Claremont, CA 91711 USA
[2] Occidental Coll, Dept Math, Los Angeles, CA 90041 USA
[3] Brandeis Univ, Dept Math, Waltham, MA 02454 USA
基金
美国国家科学基金会;
关键词
D O I
10.1112/S0024610705022490
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The orientation preserving topological symmetry group of a graph embedded in the 3-sphere is the subgroup of the automorphism group of the graph consisting of those automorphisms which can be induced by an orientation preserving homeomorphism of the ambient space. We characterize all possible orientation preserving topological symmetry groups of embeddings of complete graphs in the 3-sphere.
引用
收藏
页码:237 / 251
页数:15
相关论文
共 50 条
  • [1] Topological symmetry groups of graphs embedded in the 3-sphere
    Flapan, E
    Naimi, R
    Pommersheim, J
    Tamvakis, H
    COMMENTARII MATHEMATICI HELVETICI, 2005, 80 (02) : 317 - 354
  • [2] Graphs in the 3-Sphere with Maximum Symmetry
    Chao Wang
    Shicheng Wang
    Yimu Zhang
    Bruno Zimmermann
    Discrete & Computational Geometry, 2018, 59 : 331 - 362
  • [3] Graphs in the 3-Sphere with Maximum Symmetry
    Wang, Chao
    Wang, Shicheng
    Zhang, Yimu
    Zimmermann, Bruno
    DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 59 (02) : 331 - 362
  • [4] Topological Symmetry Groups of Complete Bipartite Graphs
    Hake, Kathleen
    Mellor, Blake
    Pittluck, Matt
    TOKYO JOURNAL OF MATHEMATICS, 2016, 39 (01) : 133 - 156
  • [5] Topological Symmetry Groups of Small Complete Graphs
    Chambers, Dwayne
    Flapan, Erica
    SYMMETRY-BASEL, 2014, 6 (02): : 189 - 209
  • [6] Complete graphs whose topological symmetry groups are polyhedral
    Flapan, Erica
    Mellor, Blake
    Naimi, Ramin
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2011, 11 (03): : 1405 - 1433
  • [8] Symmetries of minimum graphs in the 3-sphere
    Soma, T
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1998, 7 (05) : 651 - 657
  • [9] TOPOLOGICAL SYMMETRY GROUPS OF GRAPHS IN 3-MANIFOLDS
    Flapan, Erica
    Tamvakis, Harry
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (04) : 1423 - 1436
  • [10] Bordered surfaces in the 3-sphere with maximum symmetry
    Wang, Chao
    Wang, Shicheng
    Zhang, Yimu
    Zimmermann, Bruno
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (09) : 2490 - 2504