A NOTE ON TOPOLOGICAL DIMENSION, HAUSDORFF MEASURE, AND RECTIFIABILITY

被引:0
|
作者
David, Guy C. [1 ]
Le Donne, Enrico [2 ,3 ]
机构
[1] Ball State Univ, Dept Math Sci, Muncie, IN 47306 USA
[2] Univ Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56127 Pisa, Italy
[3] Univ Jyvaskyla, Dept Math & Stat, POB MAD, FI-40014 Jyvaskyla, Finland
基金
欧洲研究理事会; 芬兰科学院;
关键词
SETS;
D O I
10.1090/proc/15051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a sufficient condition for a general compact metric space to admit an n-rectifiable piece, as a consequence of a recent result of David Bate. Let X be a compact metric space of topological dimension n. Suppose that the n-dimensional Hausdorff measure of X, H-n (X), is finite. Suppose further that the lower n-density of the measure H-n is positive, H-n-almost everywhere in X. Then X contains an n-rectifiable subset of positive H-n-measure. Moreover, the assumption on the lower density is unnecessary if one uses recently announced results of Csornyei-Jones.
引用
收藏
页码:4299 / 4304
页数:6
相关论文
共 50 条