Enhancing methane production using anaerobic co-digestion of waste activated sludge with combined fruit waste and cheese whey

被引:74
|
作者
Hallaji, Seyed Mostafa [1 ]
Kuroshkarim, Mohammad [1 ]
Moussavi, Seyede Parvin [2 ]
机构
[1] Univ Tehran, Sch Environm, Coll Engn, Tehran, Iran
[2] Shahid Sadoughi Univ Med Sci & Hlth Serv, Int Branch, Environm Hlth Res Ctr, Yazd, Iran
关键词
Anaerobic co-digestion; Waste activated sludge; Fruit waste; Cheese whey; Methane production; enzymatic activity; MUNICIPAL SOLID-WASTE; FREE NITROUS-ACID; FOOD WASTE; SEWAGE-SLUDGE; FENTON PRETREATMENT; BIOGAS PRODUCTION; WATER TREATMENT; ORGANIC WASTE; MIXED SLUDGE; ENERGY;
D O I
10.1186/s12896-019-0513-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Recently, it has been indicated that anaerobic co-digestion of waste activated sludge with other waste streams at wastewater treatment plants is a promising strategy for enhancing methane production and materials recovery. The enhanced methane production can be used as a renewable source of energy in wastewater treatment plants. It can also reduce the amount of greenhouse gas emission in landfilling of the waste streams. Results: According to the results obtained in this study, anaerobic co-digestion of waste activated sludge with mixed fruit waste and cheese whey improves methane production and the quality of digested sludge in comparison to the anaerobic digestion of waste activated sludge individually. It was indicated that carbon/nitrogen ratio (C/N) in the mixture of waste activated sludge, fruit waste and cheese whey improved considerably, leading to better anaerobic organisms' activity during digestion. With assessing the activity of protease and cellulase, as the main enzymes hydrolyzing organic matter in anaerobic digestion, it was indicated that co-digestion of waste activated sludge with mixed fruit waste and cheese whey enhances the activity of these enzymes by 22 and 9% respectively. At the end of digestion, the amount of cumulative methane production significantly increased by 31% in the reactor with 85% waste activated sludge and 15% mixed fruit waste and cheese whey, compared to the reactor with 100% waste activated sludge. In addition, chemical oxygen demand (COD) and volatile solid (VS) in digested sludge was improved respectively by 9 and 7% when mixed fruit waste and cheese whey was used. Conclusions: This study revealed that mixed fruit waste and cheese whey is potentially applicable to anaerobic digestion of waste activated sludge, as fruit waste and cheese whey have high C/N ratio that enhance low C/N in waste activated sludge and provide a better diet for anaerobic organisms. This is of significant importance because not only could higher amount of renewable energy be generated from the enhanced methane production in wastewater treatment plants, but also capital costs of the companies whose waste streams are being transported to wastewater treatments plants could be reduced considerably.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Enhancing methane production using anaerobic co-digestion of waste activated sludge with combined fruit waste and cheese whey
    Seyed Mostafa Hallaji
    Mohammad Kuroshkarim
    Seyede Parvin Moussavi
    BMC Biotechnology, 19
  • [2] Anaerobic co-digestion of waste activated sludge and fish waste: Methane production performance and mechanism analysis
    Wu, Yuqi
    Song, Kang
    JOURNAL OF CLEANER PRODUCTION, 2021, 279
  • [3] Effect of pretreatment and anaerobic co-digestion of food waste and waste activated sludge on stabilization and methane production
    Naran, Erdenebayar
    Toor, Umair Ali
    Kim, Dong-Jin
    INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2016, 113 : 17 - 21
  • [4] Anaerobic co-digestion of waste activated sludge and fish waste: Methane production performance and mechanism analysis
    Wu, Yuqi
    Song, Kang
    Journal of Cleaner Production, 2021, 279
  • [5] Potential of anaerobic co-digestion of acidic fruit processing waste and waste-activated sludge for biogas production
    Zhang, Lulu
    Peng, Biao
    Wang, Luyao
    Wang, Qingyi
    GREEN PROCESSING AND SYNTHESIS, 2022, 11 (01) : 1013 - 1025
  • [6] Combined thermal hydrolysis pretreatment and anaerobic co-digestion of waste activated sludge and food waste
    Ismail, Amr
    Kakar, Farokh Laqa
    Elbeshbishy, Elsayed
    Nakhla, George
    RENEWABLE ENERGY, 2022, 195 : 528 - 539
  • [7] The effects of thiosulfinates on methane production from anaerobic co-digestion of waste activated sludge and food waste and mitigate method
    Tao, Ziletao
    Wang, Dongbo
    Yao, Fubing
    Huang, Xiaoding
    Wu, You
    Du, Mingting
    Chen, Zhuo
    An, Hongxue
    Li, Xiaoming
    Yang, Qi
    JOURNAL OF HAZARDOUS MATERIALS, 2020, 384
  • [8] Selective adaptation of an anaerobic microbial community: Biohydrogen production by co-digestion of cheese whey and vegetables fruit waste
    Gomez-Romero, J.
    Gonzalez-Garcia, A.
    Chairez, I.
    Torres, L.
    Garcia-Pena, E. I.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (24) : 12541 - 12550
  • [9] Anaerobic co-digestion of fruit and vegetable waste and sewage sludge
    Rizk, Maria Cristina
    Bergamasco, Rosangela
    Granhen Tavares, Celia Regina
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2007, 5 : CP6 - U148
  • [10] Anaerobic Co-digestion of fruit and vegetable waste and sewage sludge
    State University of Maringa, Brazil
    Int. J. Chem. Reactor Eng., 2007,