Combined Mathematical Morphology and Data Mining Based High Impedance Fault Detection

被引:13
|
作者
Sekar, Kavaskar [1 ]
Mohanty, Nalin Kant [2 ]
机构
[1] Panimalar Engn Coll, Dept Elect & Elect Engn, Chennai, Tamil Nadu, India
[2] Sri Venkateswara Coll Engn, Dept Elect & Elect Engn, Chennai, Tamil Nadu, India
关键词
Mathematical Morphology; Decision tree; High impedance fault; Data mining;
D O I
10.1016/j.egypro.2017.05.161
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an intelligent scheme for high impedance fault detection using mathematical morphology and decision tree. The current signals are pre-processed using mathematical morphology and estimation of the signal features is used to generate a decision tree model. The final relaying operation based on generated data mining decision tree model. The proposed method is tested on a standard test system with a wide range of power system operating conditions. Simulation results show that the proposed method can be highly reliable in detecting high impedance fault for harmless and secured operations. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:417 / 423
页数:7
相关论文
共 50 条
  • [1] Data mining-based high impedance fault detection using mathematical morphology
    Sekar, Kavaskar
    Mohanty, Nalin Kant
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2018, 69 : 129 - 141
  • [2] Detection of High Impedance Fault in Power Distribution Systems Using Mathematical Morphology
    Gautam, Suresh
    Brahma, Sukumar M.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (02) : 1226 - 1234
  • [3] Incorporation of Data-Mining in Protection Technology for High Impedance Fault Detection
    Masa, A. Valero
    Werben, S.
    Maun, J. C.
    [J]. 2012 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING, 2012,
  • [4] DATA-MINING BASED FAULT DETECTION
    Ma Hongguang Han Chongzhao (Xi’an Jiaotong University
    [J]. Journal of Electronics(China), 2005, (06) : 39 - 45
  • [5] DATA-MINING BASED FAULT DETECTION
    Ma Hongguang Han Chongzhao Xian Jiaotong University Xian China Wang Guohua Xu Jianfeng Zhu Xiaofei Research Institute of High Technology Xian China
    [J]. Journal of Electronics., 2005, (06)
  • [6] Reliable detection of high-impedance faults using mathematical morphology
    Hojatpanah, Farnam
    Ajaei, Firouz Badrkhani
    Tiwari, Harshita
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2023, 216
  • [7] Detection of High Impedance Faults in PV Systems using Mathematical Morphology
    Weerasekara, Madhawa
    Vilathgamuwa, Mahinda
    Mishra, Yateendra
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ELECTRONICS FOR SUSTAINABLE ENERGY SYSTEMS (IESES), 2018, : 357 - 361
  • [8] High impedance fault detection based on linear prediction
    Grimaldi, Reginaldo B. G.
    Chagas, Talita S. A.
    Montalvao, Jugurta
    Brito, Nubia S. D.
    dos Santos, Wellinsilvio C.
    Ferreira, Tarso, V
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2021, 190
  • [9] High Impedance Fault Detection based on Stockwell Transform
    Lima, Erica Mangueira
    de Almeida Coelho, Rodrigo
    Dantas Brito, Nubia Silva
    de Souza, Benemar Alencar
    [J]. PROCEEDINGS OF THE 2018 IEEE PES TRANSMISSION & DISTRIBUTION CONFERENCE AND EXHIBITION - LATIN AMERICA (T&D-LA), 2018,
  • [10] Antarctic snowmelt detection for QuikSCAT scatterometer data based on mathematical morphology combined with wavelet transform
    Wang, Xingdong
    Liu, Shuo
    [J]. INDIAN JOURNAL OF GEO-MARINE SCIENCES, 2020, 49 (02) : 225 - 232