Adic Foxby Classes

被引:0
|
作者
Sather-Wagstaff, Sean K. [1 ]
Wicklein, Richard [2 ]
机构
[1] Clemson Univ, Sch Math & Stat Sci, O-110 Martin Hall,Box 340975, Clemson, SC 29634 USA
[2] Dakota State Univ, Coll Arts & Sci, 820 N Washington Ave, Madison, SD 57042 USA
关键词
Adic finiteness; Adic semidualizing complexes; Auslander classes; Bass classes; Quasi-dualizing modules; Support; HOMOLOGICAL DIMENSIONS; LOCAL COHOMOLOGY; GORENSTEIN; MODULES; COMPLETION; COMPLEXES; COFINITE; RESPECT; SUPPORT; DUALITY;
D O I
10.1007/s10468-020-09984-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue our work on adic semidualizing complexes over a commutative noetherian ringRby investigating the associated Auslander and Bass classes (collectively known as Foxby classes), following Foxby and Christensen. Fundamental properties of these classes include Foxby Equivalence, which provides an equivalence between the Auslander and Bass classes associated to a given adic semidualizing complex. We prove a variety of stability results for these classes, for instance, with respect to F circle times(L)(R)- where F is an R-complex finite flat dimension, including special converses of these results. We also investigate change of rings and local-global properties of these classes.
引用
收藏
页码:1155 / 1189
页数:35
相关论文
共 50 条
  • [1] Adic Foxby Classes
    Sean K. Sather-Wagstaff
    Richard Wicklein
    Algebras and Representation Theory, 2021, 24 : 1155 - 1189
  • [2] Local cohomology and Foxby classes
    M. Ahmadi
    A. Rahimi
    Acta Mathematica Hungarica, 2024, 172 : 131 - 145
  • [3] Complete intersection dimensions and Foxby classes
    Sather-Wagstaff, Sean
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (12) : 2594 - 2611
  • [4] Local cohomology and Foxby classes
    Ahmadi, M.
    Rahimi, A.
    ACTA MATHEMATICA HUNGARICA, 2024, 172 (01) : 131 - 145
  • [5] Trace submodules in semidualizing modules and Foxby classes
    Bagherpour, Mohammad
    Taherizadeh, Abdoljavad
    COMMUNICATIONS IN ALGEBRA, 2025,
  • [6] When do Foxby classes coincide with the classes of modules of finite Gorenstein dimensions?
    Bennis, Driss
    Garcia Rozas, J. R.
    Oyonarte, Luis
    KYOTO JOURNAL OF MATHEMATICS, 2016, 56 (04) : 785 - 802
  • [7] Relative Gorenstein flat modules and Foxby classes and their model structures
    Bennis, Driss
    El Maaouy, Rachid
    Rozas, J. R. Garcia
    Oyonarte, Luis
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [8] A generalization of a theorem of Foxby
    Tokuji Araya
    Ryo Takahashi
    Archiv der Mathematik, 2009, 93
  • [9] On p-adic annihilators of real ideal classes
    All, Timothy
    JOURNAL OF NUMBER THEORY, 2013, 133 (07) : 2324 - 2338
  • [10] p-adic deformation of algebraic cycle classes
    Spencer Bloch
    Hélène Esnault
    Moritz Kerz
    Inventiones mathematicae, 2014, 195 : 673 - 722