Self-Assembled, Nanostructured, Tunable Metamaterials via Spinodal Decomposition

被引:49
|
作者
Chen, Zuhuang [1 ,2 ]
Wang, Xi [1 ]
Qi, Yajun [3 ]
Yang, Sui [2 ,4 ]
Soares, Julio A. N. T. [5 ]
Apgar, Brent A. [1 ]
Gao, Ran [1 ]
Xu, Ruijuan [1 ]
Lee, Yeonbae [1 ]
Zhang, Xiang [2 ,4 ]
Yao, Jie [1 ,2 ]
Martin, Lane W. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Hubei Univ, Hubei Collaborat Innovat Ctr Adv Organ Chem Mat, Key Lab Green Preparat & Applicat Mat, Minist Educ,Dept Mat Sci & Engn, Wuhan 430062, Peoples R China
[4] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA
[5] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
self-assembly; spinodal decomposition; nanoscale phase separation; metamaterials; VO2; epitaxial thin films; NEGATIVE REFRACTION; PHASE-TRANSITION; VO2; SYSTEM; NANOCOMPOSITES; FLUCTUATIONS; SEPARATION; BEHAVIOR; DRIVEN; INDEX;
D O I
10.1021/acsnano.6b05736
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-assembly via nanoscale phase separation offers an elegant route to fabricate nanocomposites with physical properties unattainable in single-component systems. One important class of nanocomposites are optical meta materials which exhibit exotic properties and lead to opportunities for agile control of light propagation. Such metamaterials are typically fabricated via expensive and hard to -scale top-down processes requiring precise integration of dissimilar materials. In turn, there is a need for alternative, more efficient routes to fabricate large-scale metamaterials for practical applications with deep-subwavelength resolution. Here, we demonstrate a bottom-up approach to fabricate scalable nanostructured metamaterials via spinodal decomposition. To demonstrate the potential of such an approach, we leverage the innate spinodal decomposition of the VO2-TiO2 system, the metal-to-insulator transition in VO2, and thin-film epitaxy, to produce self-organized nanostructures with coherent interfaces and a structural unit cell down to 15 nm (tunable between horizontally and vertically aligned lamellae) wherein the iso-frequency surface is temperature-tunable from elliptic to hyperbolic dispersion producing metamaterial behavior. These results provide an efficient route for the fabrication of nanostructured metamaterials and other nanocomposites for desired functionalities.
引用
收藏
页码:10237 / 10244
页数:8
相关论文
共 50 条
  • [1] Self-Assembled, Nanostructured, Tunable Metamaterials via Spinodal Decomposition (vol 10, pg 10237, 2016)
    Chen, Zuhuang
    Wang, Xi
    Qi, Yajun
    Yang, Sui
    Soares, Julio A. N. T.
    Apgar, Brent A.
    Gao, Ran
    Xu, Ruijuan
    Lee, Yeonbae
    Zhang, Xiang
    Yao, Jie
    Martin, Lane W.
    ACS NANO, 2017, 11 (01) : 1122 - 1122
  • [2] Self-assembled nanostructured metamaterials
    Ponsinet, Virginie
    Baron, Alexandre
    Pouget, Emilie
    Okazaki, Yutaka
    Oda, Reiko
    Barois, Philippe
    EPL, 2017, 119 (01)
  • [3] Self-assembled superlattice by spinodal decomposition during growth
    Daruka, I
    Tersoff, J
    PHYSICAL REVIEW LETTERS, 2005, 95 (07)
  • [4] Tunable Hyperbolic Plasmons in Self-Assembled Carbon Nanotube Metamaterials
    Roberts, John Andris
    Yu, Shang-Jie
    Falk, Abram L.
    Ho, Po-Hsun
    Schoeche, Stefan
    Fan, Jonathan A.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [5] Tunable Hyperbolic Metamaterials Based on Self-Assembled Carbon Nanotubes
    Roberts, John Andris
    Yu, Shang-Jie
    Ho, Po-Hsun
    Schoeche, Stefan
    Falk, Abram L.
    Fan, Jonathan A.
    NANO LETTERS, 2019, 19 (05) : 3131 - 3137
  • [6] Self-assembled nanostructures through wavelength-controlled spinodal decomposition
    Greaney, PA
    Chrzan, DC
    Clemens, BM
    Nix, WD
    APPLIED PHYSICS LETTERS, 2003, 83 (07) : 1364 - 1366
  • [7] Self-assembled plasmonic metamaterials
    Muehlig, Stefan
    Cunningham, Alastair
    Dintinger, Jose
    Scharf, Toralf
    Buergi, Thomas
    Lederer, Falk
    Rockstuhl, Carsten
    NANOPHOTONICS, 2013, 2 (03) : 211 - 240
  • [8] Self-assembled nanostructured materials
    Fendler, JH
    CHEMISTRY OF MATERIALS, 1996, 8 (08) : 1616 - 1624
  • [9] Self-assembled nanostructured sensors
    Lalli, JH
    Hill, A
    Hannah, S
    Subrahmanyan, S
    Bortner, M
    Mecham, J
    Davis, B
    Goff, RM
    Claus, RO
    SMART STRUCTURES AND MATERIALS 2004: SMART SENSOR TECHNOLOGY AND MEASUREMENT SYSTEMS, 2004, 5384 : 143 - 147
  • [10] Self-Assembled Nanostructured Materials
    Chem Mater, 8 (1616):