Fast construction of irreducible polynomials over finite fields

被引:12
|
作者
Couveignes, Jean-Marc [1 ,2 ]
Lercier, Reynald [3 ,4 ]
机构
[1] INRIA Bordeaux Sud Ouest, F-31058 Toulouse 9, France
[2] Univ Toulouse 2, Univ Toulouse, Dept Math & Informat, F-31058 Toulouse 9, France
[3] DGA, F-35174 La Roche Marguerite, France
[4] Univ Rennes 1, Inst Rech Math Rennes, F-35042 Rennes, France
关键词
ELLIPTIC-CURVES;
D O I
10.1007/s11856-012-0070-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a randomized algorithm that on inputting a finite field K with q elements and a positive integer d outputs a degree d irreducible polynomial in K[x]. The running time is d (1+E >(d))x(log q)(5+E >(q)) elementary operations. The function E > in this expression is a real positive function belonging to the class o(1), especially, the complexity is quasi-linear in the degree d. Once given such an irreducible polynomial of degree d, we can compute random irreducible polynomials of degree d at the expense of d (1+E >(d)) x (log q)(1+E >(q)) elementary operations only.
引用
收藏
页码:77 / 105
页数:29
相关论文
共 50 条