Streaming Nested Data Parallelism on Multicores

被引:2
|
作者
Madsen, Frederik M. [1 ]
Filinski, Andrzej [1 ]
机构
[1] Univ Copenhagen, Dept Comp Sci DIKU, Copenhagen, Denmark
关键词
Nested data parallelism; streaming; dataflow;
D O I
10.1145/2975991.2975998
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The paradigm of nested data parallelism (NDP) allows a variety of semi-regular computation tasks to be mapped onto SIMD-style hardware, including GPUs and vector units. However, some care is needed to keep down space consumption in situations where the available parallelism may vastly exceed the available computation resources. To allow for an accurate space-cost model in such cases, we have previously proposed the Streaming NESL language, a refinement of NESL with a high-level notion of streamable sequences. In this paper, we report on experience with a prototype implementation of Streaming NESL on a 2-level parallel platform, namely a multicore system in which we also aggressively utilize vector instructions on each core. We show that for several examples of simple, but not trivially parallelizable, text-processing tasks, we obtain single-core performance on par with off-the-shelf GNU Coreutils code, and near-linear speedups for multiple cores.
引用
收藏
页码:44 / 51
页数:8
相关论文
共 50 条
  • [1] Harnessing the Multicores: Nested Data Parallelism in Haskell
    Jones, Simon Peyton
    [J]. PROGRAMMING LANGUAGES AND SYSTEMS, PROCEEDINGS, 2008, 5356 : 138 - 138
  • [2] Nested Data-Parallelism on the GPU
    Bergstrom, Lars
    Reppy, John
    [J]. ACM SIGPLAN NOTICES, 2012, 47 (09) : 247 - 258
  • [3] Incremental Flattening for Nested Data Parallelism
    Henriksen, Troels
    Thoroe, Frederik
    Elsman, Martin
    Oancea, Cosmin
    [J]. PROCEEDINGS OF THE 24TH SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING (PPOPP '19), 2019, : 53 - 67
  • [4] Data Parallelism for Distributed Streaming Applications
    Shinde, Bhagyashali
    Singh, S. T.
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2016,
  • [5] Safe Data Parallelism for General Streaming
    Schneider, Scott
    Hirzel, Martin
    Gedik, Bugra
    Wu, Kun-Lung
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2015, 64 (02) : 504 - 517
  • [6] Data-Only Flattening for Nested Data Parallelism
    Bergstrom, Lars
    Reppy, John
    Rosen, Stephen
    Shaw, Adam
    Fluet, Matthew
    Rainey, Mike
    [J]. ACM SIGPLAN NOTICES, 2013, 48 (08) : 81 - 91
  • [7] Accelerating Nested Data Parallelism: Preserving Regularity
    van den Haak, Lars B.
    McDonell, Trevor L.
    Keller, Gabriele K.
    de Wolff, Ivo Gabe
    [J]. EURO-PAR 2020: PARALLEL PROCESSING, 2020, 12247 : 426 - 442
  • [8] Multiprocessed parallelism support in ALDOR on SMPs and multicores
    Ontario Research Cenre for Computer Algebra, University of Western Ontario, London, Ont., Canada
    [J]. PASCO'07: Proceedings of the 2007 International Workshop on Parallel Symbolic Computation, 2007, : 60 - 68
  • [9] A partitioning-independent paradigm for nested data parallelism
    Engelhardt, D
    Wendelborn, A
    [J]. INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 1996, 24 (04) : 291 - 317
  • [10] Adding Data Parallelism to Streaming Pipelines for Throughput Optimization
    Li, Peng
    Agrawal, Kunal
    Buhler, Jeremy
    Chamberlain, Roger D.
    [J]. 2013 20TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING (HIPC), 2013, : 20 - 29