Estimation of Forest Canopy Height and Aboveground Biomass from Spaceborne LiDAR and Landsat Imageries in Maryland

被引:45
|
作者
Wang, Mengjia [1 ,2 ,3 ]
Sun, Rui [1 ,2 ,3 ]
Xiao, Zhiqiang [1 ,2 ,3 ]
机构
[1] Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
[2] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100875, Peoples R China
[3] Beijing Normal Univ, Inst Remote Sensing Sci & Engn, Fac Geog Sci, Beijing Engn Res Ctr Global Land Remote Sensing P, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
forest canopy height; aboveground biomass; ICESat GLAS; Landsat; random forest model; DIFFERENCE VEGETATION INDEX; BOREAL FOREST; VERTICAL STRUCTURE; NATIONAL FOREST; AIRBORNE; SRTM; ICESAT/GLAS; CARBON; MODEL; BIODIVERSITY;
D O I
10.3390/rs10020344
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mapping the regional distribution of forest canopy height and aboveground biomass is worthwhile and necessary for estimating the carbon stocks on Earth and assessing the terrestrial carbon flux. In this study, we produced maps of forest canopy height and the aboveground biomass at a 30 m spatial resolution in Maryland by combining Geoscience Laser Altimeter System (GLAS) data and Landsat spectral imageries. The processes for calculating the forest biomass included the following: (i) processing the GLAS waveform and calculating spatially discrete forest canopy heights; (ii) developing canopy height models from Landsat imagery and extrapolating them to spatially contiguous canopy heights in Maryland; and, (iii) estimating forest aboveground biomass according to the relationship between canopy height and biomass. In our study, we explore the ability to use the GLAS waveform to calculate canopy height without ground-measured forest metrics (R-2 = 0.669, RMSE = 4.82 m, MRE = 15.4%). The machine learning models performed better than the principal component model when mapping the regional forest canopy height and aboveground biomass. The total forest aboveground biomass in Maryland reached approximately 160 Tg. When compared with the existing Biomass_CMS map, our biomass estimates presented a similar distribution where higher values were in the Western Shore Uplands region and Folded Application Mountain section, while lower values were located in the Delmarva Peninsula and Allegheny Mountain regions.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Effects of Forest Canopy Structure on Forest Aboveground Biomass Estimation Using Landsat Imagery
    Li, Chao
    Li, Mingyang
    Iizuka, Kotaro
    Liu, Jie
    Chen, Keyi
    Li, Yingchang
    [J]. IEEE ACCESS, 2021, 9 : 5285 - 5295
  • [2] Comparison of Aboveground Biomass Estimation From InSAR and LiDAR Canopy Height Models in Tropical Forests
    Schlund, Michael
    Erasmi, Stefan
    Scipal, Klaus
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (03) : 367 - 371
  • [3] Mapping forest canopy height globally with spaceborne lidar
    Simard, Marc
    Pinto, Naiara
    Fisher, Joshua B.
    Baccini, Alessandro
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2011, 116
  • [4] Airborne Lidar Sampling Strategies to Enhance Forest Aboveground Biomass Estimation from Landsat Imagery
    Li, Siqi
    Quackenbush, Lindi J.
    Im, Jungho
    [J]. REMOTE SENSING, 2019, 11 (16)
  • [5] Allometry-based estimation of forest aboveground biomass combining LiDAR canopy height attributes and optical spectral indexes
    Yang, Qiuli
    Su, Yanjun
    Hu, Tianyu
    Jin, Shichao
    Liu, Xiaoqiang
    Niu, Chunyue
    Liu, Zhonghua
    Kelly, Maggi
    Wei, Jianxin
    Guo, Qinghua
    [J]. FOREST ECOSYSTEMS, 2022, 9
  • [6] Allometry-based estimation of forest aboveground biomass combining LiDAR canopy height attributes and optical spectral indexes
    Qiuli Yang
    Yanjun Su
    Tianyu Hu
    Shichao Jin
    Xiaoqiang Liu
    Chunyue Niu
    Zhonghua Liu
    Maggi Kelly
    Jianxin Wei
    Qinghua Guo
    [J]. Forest Ecosystems, 2022, 9 (05) : 617 - 629
  • [7] Exploring the Relationship between Forest Canopy Height and Canopy Density from Spaceborne LiDAR Observations
    Kay, Heather
    Santoro, Maurizio
    Cartus, Oliver
    Bunting, Pete
    Lucas, Richard
    [J]. REMOTE SENSING, 2021, 13 (24)
  • [8] JOINT MODELING OF SPACEBORNE RADAR AND LIDAR DATA WITH ENSEMBLE LEARNING FOR FOREST ABOVEGROUND BIOMASS ESTIMATION
    Jiang, Fu-Gen
    Ming-Dian-Li
    Chen, Si-Wei
    [J]. 2024 4TH URSI ATLANTIC RADIO SCIENCE MEETING, AT-RASC 2024, 2024,
  • [9] Forest Canopy Height Estimation Combining Dual-Polarization PolSAR and Spaceborne LiDAR Data
    Tong, Yao
    Liu, Zhiwei
    Fu, Haiqiang
    Zhu, Jianjun
    Zhao, Rong
    Xie, Yanzhou
    Hu, Huacan
    Li, Nan
    Fu, Shujuan
    [J]. FORESTS, 2024, 15 (09):
  • [10] FOREST CANOPY HEIGHT ESTIMATION FROM CALIPSO LIDAR MEASUREMENT
    Lu, Xiaomei
    Hu, Yongxiang
    Lucker, Patricia L.
    Trepte, Charles
    [J]. 27TH INTERNATIONAL LASER RADAR CONFERENCE (ILRC 27), 2016, 119