Electrochemical Studies of Molybdate-Doped LiFePO4 as a Cathode Material in Li-Ion Batteries

被引:3
|
作者
Kim, Ketack [1 ]
Kam, Daewoong [2 ]
Kim, Yeonjoo [2 ]
Kim, Sinwoong [2 ]
Kim, Minsoo [2 ]
Kim, Hyun-Soo [2 ]
机构
[1] Sangmyung Univ, Dept Chem, Seoul 110743, South Korea
[2] Korea Electrotechnol Res Inst, Battery Res Ctr, Chang Won 641600, South Korea
关键词
Li-Ion Battery; LiFePO4; Anionic Dopant; Molybdate; LITHIUM; PERFORMANCE;
D O I
10.1166/jnn.2013.7269
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The use of molybdate as a new anionic dopant that replaces phosphate in LiFePO4 was studied. When a small amount of molybdate (0.5 mol%) was used as a dopant, the olivine structure was maintained, while the lattice volume increased by 0.4%. The expanded volume facilitates ionic transfer, because of which the capacity of doped LiFePO4 at high current discharge rates is higher than that of pure LiFePO4. The discharge value increased by 25.2% at a charge rate of 5 C when the material was doped with 0.5 mol% molybdate ions. The slight expansion of the lattice volume in the olivine structure facilitates a fast redox reaction by lowering the charge transfer resistance. The current values from cyclic voltammetry indicate that the oxidation (charge) process of the cathode material is more improved than the corresponding reduction (discharge) process. Increasing the level of doping beyond 0.5 mol% had no effect on the results. At some discharge rates, the discharge capacity became worse. Because molybdate is divalent while phosphate is trivalent, a large number of molybdate ions in the lattice can exert considerable stress on the structure.
引用
收藏
页码:3383 / 3386
页数:4
相关论文
共 50 条
  • [1] Studies on LiFePO4 as Cathode Material in Li-Ion Batteries
    Illig, J.
    Chrobak, T.
    Ender, M.
    Schmidt, J. P.
    Klotz, D.
    Ivers-Tiffee, E.
    BATTERIES AND ENERGY TECHNOLOGY (GENERAL) - 217TH ECS MEETING, 2010, 28 (30): : 3 - 17
  • [2] Urgency of LiFePO4 as cathode material for Li-ion batteries
    Guo, Kelvii Wei
    ADVANCES IN MATERIALS RESEARCH-AN INTERNATIONAL JOURNAL, 2015, 4 (02): : 63 - 76
  • [3] Electrochemical performance of LiFePO4 cathode material for Li-ion battery
    LI Shuzhong1)
    Rare Metals, 2006, (S1) : 62 - 66
  • [4] Electrochemical performance of LiFePO4 cathode material for Li-ion battery
    Li Shuzhong
    Li Chao
    Fan Yanliang
    Xu Jiaqiang
    Wang Tao
    Yang Shuting
    RARE METALS, 2006, 25 : 62 - 66
  • [5] Low temperature performance of LiFePO4 cathode material for Li-ion batteries
    Chang, Wonyoung
    Kim, Su-Jin
    Park, In-Tae
    Cho, Byung-Won
    Chung, Kyung Yoon
    Shin, Heon-Cheol
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 563 : 249 - 253
  • [6] Synthesis of LiFePO4/Graphene Nanocomposite and Its Electrochemical Properties as Cathode Material for Li-Ion Batteries
    Ma, Xiaoling
    Chen, Gongxuan
    Liu, Qiong
    Zeng, Guoping
    Wu, Tian
    JOURNAL OF NANOMATERIALS, 2015, 2015
  • [7] Vanadium Modified LiFePO4 Cathode for Li-Ion Batteries
    Hong, Jian
    Wang, C. S.
    Chen, X.
    Upreti, S.
    Whittingham, M. Stanley
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2009, 12 (02) : A33 - A38
  • [8] Electrochemical Performance of a Water-Based LiFePO4 Cathode for Li-Ion Batteries
    Chanhaew A.
    Aranmala K.
    Darmawan L.M.
    Nisa S.S.
    Nurohmah A.R.
    Meethong N.
    Defect and Diffusion Forum, 2022, 417 : 163 - 168
  • [9] Structure and electrochemical characteristics of LiFePO4 cathode materials for rechargeable Li-Ion batteries
    A. S. Kamzin
    A. V. Bobyl’
    E. M. Ershenko
    E. I. Terukov
    D. V. Agafonov
    E. N. Kudryavtsev
    Physics of the Solid State, 2013, 55 : 1385 - 1394