Using Deep Neural Networks to Simulate Human Body

被引:3
|
作者
Dai, Yinglong [1 ]
Wang, Guojun [2 ]
Chen, Sihong [3 ]
Xie, Dongqing [2 ]
Chen, Shuhong [2 ]
机构
[1] Cent South Univ, Sch Informat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Guangzhou Univ, Sch Comp Sci & Educ Software, Guangzhou 510006, Guangdong, Peoples R China
[3] Hunan Univ Chinese Med, Hosp 1, Prevent Treatment Ctr, Changsha 410007, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
DISEASE PROGRESSION; CLASSIFICATION;
D O I
10.1109/ISPA/IUCC.2017.00147
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a human body simulator for healthcare research. In this special environment, human body is regarded as a black-box system that generates different outputs corresponding to different external inputs. The inputs can be healthcare interventions, and the outputs can be phenotypes that reflect latent health states. The healthcare purpose is to find effective strategies that can make the human body transfer to a healthy state from any other unhealthy states. At first, we propose to use deep neural networks (DNNs) to model the human body system. After some analyses, we discover that the models of neural networks can reflect some real cases. Then, we implement a virtual human body simulator and a deep reinforcement learning (DRL) module. These two modules form a closed loop to do some healthcare experiments. The experiments compare different architectures of the body simulator and illustrate some attributes of the models.
引用
收藏
页码:959 / 966
页数:8
相关论文
共 50 条
  • [1] Using Deep Neural Networks to Simulate Heart Allocation Policies
    Medved, D.
    Nugets, P.
    Ohlsson, M.
    Hoglund, P.
    Andersson, B.
    Nilsson, J.
    [J]. JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2018, 37 (04): : S171 - S172
  • [2] Modelling Human Body Pose for Action Recognition Using Deep Neural Networks
    Chengyang Li
    Ruofeng Tong
    Min Tang
    [J]. Arabian Journal for Science and Engineering, 2018, 43 : 7777 - 7788
  • [3] Modelling Human Body Pose for Action Recognition Using Deep Neural Networks
    Li, Chengyang
    Tong, Ruofeng
    Tang, Min
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2018, 43 (12) : 7777 - 7788
  • [4] Cryptography by Synchronization of Hopfield Neural Networks that Simulate Chaotic Signals Generated by the Human Body
    Ramos, Elias de Almeida
    Britto Filho, Joao Carlos
    Reis, Ricardo
    [J]. 2019 17TH IEEE INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS), 2019,
  • [5] Body Joints Regression Using Deep Convolutional Neural Networks
    Abobakr, Ahmed
    Hossny, Mohammed
    Nahavandi, Saeid
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 3281 - 3287
  • [6] Human Action Recognition Using Deep Neural Networks
    Koli, Rashmi R.
    Bagban, Tanveer, I
    [J]. PROCEEDINGS OF THE 2020 FOURTH WORLD CONFERENCE ON SMART TRENDS IN SYSTEMS, SECURITY AND SUSTAINABILITY (WORLDS4 2020), 2020, : 376 - 380
  • [7] Dementia in Convolutional Neural Networks: Using Deep Learning Models to Simulate Neurodegeneration of the Visual System
    Jasmine A. Moore
    Anup Tuladhar
    Zahinoor Ismail
    Pauline Mouches
    Matthias Wilms
    Nils D. Forkert
    [J]. Neuroinformatics, 2023, 21 : 45 - 55
  • [8] Dementia in Convolutional Neural Networks: Using Deep Learning Models to Simulate Neurodegeneration of the Visual System
    Moore, Jasmine A.
    Tuladhar, Anup
    Ismail, Zahinoor
    Mouches, Pauline
    Wilms, Matthias
    Forkert, Nils D.
    [J]. NEUROINFORMATICS, 2023, 21 (01) : 45 - 55
  • [9] Using artificial neural networks to simulate the reorientation task
    Dawson, Michael R. W.
    Kelly, Debbie M.
    Spetch, Marcia L.
    [J]. CANADIAN JOURNAL OF EXPERIMENTAL PSYCHOLOGY-REVUE CANADIENNE DE PSYCHOLOGIE EXPERIMENTALE, 2007, 61 (04): : 348 - 348
  • [10] USING NEURAL NETWORKS TO SIMULATE THE ALZHEIMER'S DISEASE
    Monteiro, Julio L. R.
    Netto, Marcio Lobo
    Andina, Diego
    Pelaez, Javier Ropero
    [J]. 2008 WORLD AUTOMATION CONGRESS PROCEEDINGS, VOLS 1-3, 2008, : 712 - +