POINT MEASUREMENTS FOR A NEUMANN-TO-DIRICHLET MAP AND THE CALDERON PROBLEM IN THE PLANE

被引:12
|
作者
Hyvonen, Nuutti [1 ]
Piiroinen, Petteri [2 ]
Seiskari, Otto [1 ]
机构
[1] Aalto Univ, Dept Math & Syst Anal, FI-00076 Aalto, Finland
[2] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
Calderon problem; Neumann-to-Dirichlet map; point measurements; (bi)sweep data; partial data; INVERSE CONDUCTIVITY PROBLEM; ELECTRODE MODELS; GLOBAL UNIQUENESS;
D O I
10.1137/120872164
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work considers properties of the Neumann-to-Dirichlet map for the conductivity equation under the assumption that the conductivity is identically one close to the boundary of the examined smooth, bounded, and simply connected domain. It is demonstrated that the so-called bisweep data, i.e., the (relative) potential differences between two boundary points when delta currents of opposite signs are applied at the very same points, uniquely determine the whole Neumann-to-Dirichlet map. In two dimensions, the bisweep data extend as a holomorphic function of two variables to some (interior) neighborhood of the product boundary. It follows that the whole Neumann-to-Dirichlet map is characterized by the derivatives of the bisweep data at an arbitrary point. On the diagonal of the product boundary, these derivatives can be given with the help of the derivatives of the (relative) boundary potentials at some fixed point caused by the distributional current densities supported at the same point, and thus such point measurements uniquely define the Neumann-to-Dirichlet map. This observation also leads to a new, truly local uniqueness result for the so-called Calderon inverse conductivity problem.
引用
收藏
页码:3526 / 3536
页数:11
相关论文
共 50 条
  • [41] On the Neumann method and the Dirichlet problem.
    Korn, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1900, 131 : 26 - 27
  • [42] Stability result for elliptic inverse periodic coefficient problem by partial Dirichlet-to-Neumann map
    Choulli, Mourad
    Kian, Yavar
    Soccorsi, Eric
    JOURNAL OF SPECTRAL THEORY, 2018, 8 (02) : 733 - 768
  • [43] Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map
    Bellassoued, M.
    Jellali, D.
    Yamamoto, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (02) : 1036 - 1046
  • [44] Stability estimate for an inverse problem for the magnetic Schrodinger equation from the Dirichlet-to-Neumann map
    Bellassoued, Mourad
    Choulli, Mourad
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (01) : 161 - 195
  • [45] The Complete Dirichlet-to-Neumann Map for Differential Forms
    Sharafutdinov, Vladimir
    Shonkwiler, Clayton
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (04) : 2063 - 2080
  • [46] The boundary distance function and the Dirichlet-to-Neumann map
    Pestov, L
    Uhlmann, G
    MATHEMATICAL RESEARCH LETTERS, 2004, 11 (2-3) : 285 - 297
  • [47] Dirichlet-to-Neumann Map for a Nonlinear Diffusion Equation
    Barone, Vincenzo
    De Lillo, Silvana
    Lupo, Gaia
    Polimeno, Antonino
    STUDIES IN APPLIED MATHEMATICS, 2011, 126 (02) : 145 - 155
  • [48] The Determinant of the Dirichlet-to-Neumann Map for Surfaces with Boundary
    Guillarmou, Colin
    Guillope, Laurent
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [49] Hyperbolic geometry and local Dirichlet-Neumann map
    Isozaki, H
    Uhlmann, G
    ADVANCES IN MATHEMATICS, 2004, 188 (02) : 294 - 314
  • [50] Stability of spectral partitions and the Dirichlet-to-Neumann map
    G. Berkolaiko
    Y. Canzani
    G. Cox
    J. L. Marzuola
    Calculus of Variations and Partial Differential Equations, 2022, 61