Discrete universal filtering via hidden Markov modelling

被引:0
|
作者
Moon, T [1 ]
Weissman, T [1 ]
机构
[1] Stanford Univ, Informat Syst Lab, Stanford, CA 94305 USA
关键词
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
We consider the discrete universal filtering problem, where the components of a discrete signal emitted by an unknown source and corrupted by a known DMC are to be causally estimated. We derive a family of filters which we show to be universally asymptotically optimal in the sense of achieving the optimum filtering performance when the clean signal is stationary, ergodic, and satisfies an additional mild positivity condition. Our schemes are based on approximating the noisy signal by a hidden Markov process (HMP) via maximum-likelihood (ML) estimation, followed by use of the well-known forward recursions for HMP state estimation. We show that as the data length increases, and as the number of states in the HMP approximation increases, our family of filters attain the performance of the optimal distribution-dependent filter.
引用
收藏
页码:1285 / 1289
页数:5
相关论文
共 50 条
  • [1] Universal filtering via hidden Markov modeling
    Moon, Taesup
    Weissman, Tsachy
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (02) : 692 - 708
  • [2] Uncertainty and filtering of hidden Markov models in discrete time
    Cohen, Samuel N.
    PROBABILITY UNCERTAINTY AND QUANTITATIVE RISK, 2020, 5 (01)
  • [3] Filtering on hidden Markov models
    Kim, NS
    Kim, DK
    IEEE SIGNAL PROCESSING LETTERS, 2000, 7 (09) : 253 - 255
  • [4] Driver Intention Estimation via Discrete Hidden Markov Model
    Amsalu, Seifemichael B.
    Homaifar, Abdollah
    Karimoddini, Ali
    Kurt, Arda
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 2712 - 2717
  • [5] Bayesian filtering for hidden Markov models via Monte Carlo methods
    Doucet, A
    Andrieu, C
    Fitzgerald, W
    NEURAL NETWORKS FOR SIGNAL PROCESSING VIII, 1998, : 194 - 203
  • [6] Modelling Emotion Dynamics on Twitter via Hidden Markov Model
    Naskar, Debashis
    Onaindia, Eva
    Rebollo, Miguel
    Das, Subhashis
    IIWAS2019: THE 21ST INTERNATIONAL CONFERENCE ON INFORMATION INTEGRATION AND WEB-BASED APPLICATIONS & SERVICES, 2019, : 245 - 249
  • [7] H∞-Filtering Design for Discrete-Time Markov Jump Systems with Hidden Parameters
    de Oliveira, A. M.
    Costa, O. L. V.
    2016 IEEE CONFERENCE ON CONTROL APPLICATIONS (CCA), 2016,
  • [8] H2-Filtering for discrete-time hidden Markov jump systems
    de Oliveira, A. M.
    Costa, O. L. V.
    INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (03) : 599 - 615
  • [9] A HIDDEN MARKOV MODEL FOR COLLABORATIVE FILTERING
    Sahoo, Nachiketa
    Singh, Param Vir
    Mukhopadhyay, Tridas
    MIS QUARTERLY, 2012, 36 (04) : 1329 - 1356
  • [10] Inverse Filtering for Hidden Markov Models
    Mattila, Robert
    Rojas, Cristian R.
    Krishnamurthy, Vikram
    Wahlberg, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30