Hierarchical pose estimation for human gait analysis

被引:4
|
作者
Spehr, Jens [1 ]
Winkelbach, Simon [1 ]
Wahl, Friedrich M. [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Robot & Prozessinformat, D-38106 Braunschweig, Germany
关键词
Gait analysis; Human pose estimation; Hierarchical graphical model; Markov random fields;
D O I
10.1016/j.cmpb.2011.12.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Articulated structures like the human body have many degrees of freedom. This makes an evaluation of the configuration's likelihood very challenging. In this work we propose new linked hierarchical graphical models which are able to efficiently evaluate likelihoods of articulated structures by sharing visual primitives. Instead of evaluating all configurations of the human body separately we take advantage of the fact that different configurations of the human body share body parts, and body parts, in turn, share visual primitives. A hierarchical Markov random field is used to integrate the sharing of visual primitives in a probabilistic framework. We propose a scalable hierarchical representation of the human body and show that this representation is especially well suited for human gait analysis from a frontal camera perspective. Furthermore, the results of the evaluation on a gait dataset show that sharing primitives substantially accelerates the evaluation and that our hierarchical probabilistic framework is a robust method for scalable detection of the human body. (c) 2011 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:104 / 113
页数:10
相关论文
共 50 条
  • [1] Human Pose Estimation for Clinical Analysis of Gait Pathologies
    Ali, Manal Mostafa
    Hassan, Maha Medhat
    Zaki, M.
    [J]. BIOINFORMATICS AND BIOLOGY INSIGHTS, 2024, 18
  • [2] Efficient Human Pose Estimation in Hierarchical Context
    Zhang, Feng
    Zhu, Xiatian
    Ye, Mao
    [J]. IEEE ACCESS, 2019, 7 : 29365 - 29373
  • [3] Hierarchical Adversarial Network for Human Pose Estimation
    Radwan, Ibrahim
    Moustafa, Nour
    Keating, Byron
    Choo, Kim-Kmang Raymond
    Goecke, Roland
    [J]. IEEE ACCESS, 2019, 7 : 103619 - 103628
  • [4] Real-time Human Pose Estimation at the Edge for Gait Analysis at a Distance
    Martini, Enrico
    Boldo, Michele
    Aldegheri, Stefano
    De Marchi, Mirco
    Vale, Nicola
    Filippetti, Mirko
    Smania, Nicola
    Bertucco, Matteo
    Picelli, Alessandro
    Bombieri, Nicola
    [J]. 18TH ANNUAL INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SENSOR SYSTEMS (DCOSS 2022), 2022, : 45 - 48
  • [5] Hierarchical Contextual Refinement Networks for Human Pose Estimation
    Nie, Xuecheng
    Feng, Jiashi
    Xing, Junliang
    Xiao, Shengtao
    Yan, Shuicheng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (02) : 924 - 936
  • [6] Hierarchical Graph Neural Network for Human Pose Estimation
    Zheng, Guanghua
    Zhao, Zhongqiu
    Zhang, Zhao
    Yang, Yi
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2663 - 2668
  • [7] Gait Analysis and Detection of Human Pose Diseases
    Balti, Ala
    Ben Khelifa, Mohamed Moncef
    Ben Hassine, Slim
    Ouazaa, Hibet-Allah
    Abid, Saber
    Lakhoua, Mohamed Najeh
    Sayadi, Mounir
    [J]. 2022 8TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'22), 2022, : 1381 - 1386
  • [8] Human Pose Estimation and Gait Analysis with Convolutional Neural Networks for Alzheimer's Disease Detection
    Seifallahi, Mahmoud
    Farrell, Brennen
    Galvin, James E.
    Ghoraani, Behnaz
    [J]. BIG DATA VI: LEARNING, ANALYTICS, AND APPLICATIONS, 2024, 13036
  • [9] Two-dimensional video-based analysis of human gait using pose estimation
    Stenum, Jan
    Rossi, Cristina
    Roemmich, Ryan T.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (04)
  • [10] ITERATIVE SUBNETWORK WITH LINEAR HIERARCHICAL ORDERING FOR HUMAN POSE ESTIMATION
    Chu, Shek Wai
    Zhang, Chaoyi
    Song, Yang
    Cai, Weidong
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 514 - 518