On global existence for Ito-Volterra functional differential equations

被引:0
|
作者
Okonkwo, ZC [1 ]
机构
[1] Albany State Univ, Dept Math & Comp Sci, Albany, GA 31705 USA
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2004年 / 13卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the global existence of a class of stochastic functional differential equations involving causal operators. Using some results of Corduneanu and the integral representation of the solution process, existence and uniqueness of the solution process of this class of functional differential equations are proven. Furthermore, a singular perturbation problem related to this class of equations is discussed.
引用
收藏
页码:17 / 23
页数:7
相关论文
共 50 条
  • [1] ON STRONG SOLUTIONS OF STOCHASTIC ITO-VOLTERRA EQUATIONS
    KLEPTSYNA, ML
    VERETENNIKOV, AY
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1985, 29 (01) : 153 - 157
  • [2] Numerical solution of Ito-Volterra integral equations by the QR factorization method
    Ahmadinia, M.
    Afshariarjmand, H.
    Salehi, M.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (04) : 3171 - 3188
  • [3] Wavelets method for solving nonlinear stochastic Ito-Volterra integral equations
    Heydari, Mohammad Hossein
    Hooshmandasl, Mohammad Reza
    Cattani, Carlo
    GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (01) : 81 - 95
  • [4] Euler polynomial solutions of nonlinear stochastic Ito-Volterra integral equations
    Mirzaee, Farshid
    Samadyar, Nasrin
    Hoseini, Seyede Fatemeh
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 574 - 585
  • [5] Optimal control in Ito-Volterra systems
    Basin, MV
    Garcia, MAA
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2001, 8 (03): : 299 - 314
  • [6] A EFFICIENT COMPUTATIONAL METHOD FOR SOLVING STOCHASTIC ITO-VOLTERRA INTEGRAL EQUATIONS
    Mohammadi, Fakhrodin
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2015, 5 (02): : 286 - 297
  • [7] Pth MEAN ASYMPTOTIC STABILITY AND INTEGRABILITY OF ITO-VOLTERRA INTEGRODIFFERENTIAL EQUATIONS
    Jankovic, Svetlana
    Obradovic, Maja
    FILOMAT, 2009, 23 (03) : 181 - 197
  • [8] A collocation technique for solving nonlinear Stochastic Ito-Volterra integral equations
    Mirzaee, Farshid
    Hadadiyan, Elham
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 1011 - 1020
  • [9] Optimal controller for Ito-Volterra systems
    Basin, MV
    Garcia, MAA
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 2921 - 2926
  • [10] ALMOST SURE STABILITY OF LINEAR ITO-VOLTERRA EQUATIONS WITH DAMPED STOCHASTIC PERTURBATIONS
    Appleby, John A. D.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2002, 7 : 223 - 234