Geometric stable roommates

被引:24
|
作者
Arkin, Esther M. [6 ]
Bae, Sang Won [5 ]
Efrat, Alon [4 ]
Okamoto, Kazuya [3 ]
Mitchell, Joseph S. B. [6 ]
Polishchuke, Valentin [1 ,2 ]
机构
[1] Univ Helsinki, Helsinki Inst Informat Technol, FIN-00014 Helsinki, Finland
[2] Helsinki Univ Technol, FIN-02150 Espoo, Finland
[3] Kyoto Univ, Grad Sch Informat, Kyoto 6068501, Japan
[4] Univ Arizona, Tucson, AZ 85721 USA
[5] Korea Adv Inst Sci & Technol, Taejon, South Korea
[6] SUNY Stony Brook, Stony Brook, NY USA
基金
美国国家航空航天局; 美国国家科学基金会; 芬兰科学院;
关键词
Algorithms; Computational geometry; Graph algorithms; Stable roommates with ties; Consistent preferences; alpha-Stable matching; MATCHING PROBLEMS; CYCLIC PREFERENCES; MARRIAGE;
D O I
10.1016/j.ipl.2008.10.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider instances of the Stable Roommates problem that arise from geometric representation of participants' preferences: a participant is a point ill a metric space, and his preference list is given by the sorted list of distances to the other participants. We show that contrary to the general case, the problem admits a polynomial-time solution even in the case when ties are present in the preference lists. We define the notion of an alpha-stable matching: the participants are willing to switch partners only for a (multiplicative) improvement of at least alpha. We prove that, in general, finding alpha-stable matchings is not easier than finding matchings that are stable in the usual sense, We show that, unlike in the general case, in a three-dimensional geometric stable roommates problem, a 2-stable matching can be found in polynomial time. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:219 / 224
页数:6
相关论文
共 50 条
  • [1] Stable Roommates Spanner
    Bose, Prosenjit
    Carmi, Paz
    Chaitman-Yerushalmi, Lilach
    Collette, Sebastien
    Katz, Matthew J.
    Langerman, Stefan
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (02): : 120 - 130
  • [2] The stable roommates problem with ties
    Irving, RW
    Manlove, DF
    JOURNAL OF ALGORITHMS, 2002, 43 (01) : 85 - 105
  • [3] The strongly stable roommates problem
    Kunysz, Adam (aku@cs.uni.wroc.pl), 2016, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing (57):
  • [4] On a Generalization of the Stable Roommates Problem
    Cechlarova, Katarina
    Fleiner, Tamas
    ACM TRANSACTIONS ON ALGORITHMS, 2005, 1 (01) : 143 - 156
  • [5] AN EFFICIENT ALGORITHM FOR THE STABLE ROOMMATES PROBLEM
    IRVING, RW
    JOURNAL OF ALGORITHMS, 1985, 6 (04) : 577 - 595
  • [6] THE STABLE ROOMMATES PROBLEM WITH RANDOM PREFERENCES
    PITTEL, B
    ANNALS OF PROBABILITY, 1993, 21 (03): : 1441 - 1477
  • [7] The Stable Roommates Problem with Short Lists
    Cseh, Agnes
    Irving, Robert W.
    Manlove, David F.
    THEORY OF COMPUTING SYSTEMS, 2019, 63 (01) : 128 - 149
  • [8] Almost stable matchings in the roommates problem
    Abraham, DJ
    Biró, P
    Manlove, DF
    APPROXIMATION AND ONLINE ALGORITHMS, 2006, 3879 : 1 - 14
  • [9] The stable roommates problem with choice functions
    Fleiner, Tamas
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 2008, 5035 : 385 - 400
  • [10] Solutions for the Stable Roommates Problem with Payments
    Biro, Peter
    Bomhoff, Matthijs
    Golovach, Petr A.
    Kern, Walter
    Paulusma, Daniel
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2012, 7551 : 69 - 80