Non-uniform Label Smoothing for Diabetic Retinopathy Grading from Retinal Fundus Images with Deep Neural Networks

被引:12
|
作者
Galdran, Adrian [1 ,2 ]
Chelbi, Jihed [3 ]
Kobi, Riadh [3 ]
Dolz, Jose [1 ]
Lombaert, Herve [1 ]
ben Ayed, Ismail [1 ]
Chakor, Hadi [3 ]
机构
[1] Cole Technol Super Montreal, Montreal, PQ, Canada
[2] Univ Bournemouth, Poole, Dorset, England
[3] Diag INC, Brossard, PQ, Canada
来源
关键词
diabetic retinopathy grading; retinal image analysis; label smoothing; deep learning;
D O I
10.1167/tvst.9.2.34
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: Introducing a new technique to improve deep learning (DL) models designed for automatic grading of diabetic retinopathy (DR) from retinal fundus images by enhancing predictions' consistency. Methods: A convolutional neural network (CNN) was optimized in three different manners to predict DR grade from eye fundus images. The optimization criteria were (1) the standard cross-entropy (CE) loss; (2) CE supplemented with label smoothing (LS), a regularization approach widely employed in computer vision tasks; and (3) our proposed non-uniform label smoothing (N-ULS), a modification of LS that models the underlying structure of expert annotations. Results: Performance was measured in terms of quadratic-weighted kappa score (quad-kappa) and average area under the receiver operating curve (AUROC), as well as with suitable metrics for analyzing diagnostic consistency, like weighted precision, recall, and F1 score, or Matthews correlation coefficient. While LS generally harmed the performance of the CNN, N-ULS statistically significantly improved performance with respect to CE in terms quad-kappa score (73.17 vs. 77.69, P < 0.025), without any performance decrease in average AUROC. N-ULS achieved this while simultaneously increasing performance for all other analyzed metrics. Conclusions: For extending standard modeling approaches from DR detection to the more complex task of DR grading, it is essential to consider the underlying structure of expert annotations. The approach introduced in this article can be easily implemented in conjunction with deep neural networks to increase their consistency without sacrificing per-class performance. Translational Relevance: A straightforward modification of current standard training practices of CNNs can substantially improve consistency in DR grading, better modeling expert annotations and human variability.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] Automated Grading of Diabetic Retinopathy in Retinal Fundus Images using Deep Learning
    Hathwar, Sagar B.
    Srinivasa, Gowri
    PROCEEDINGS OF THE 2019 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (IEEE ICSIPA 2019), 2019, : 73 - 77
  • [2] Leveraging Retinal Fundus Images with Deep Learning for Diabetic Retinopathy Grading and Classification
    Yamin M.
    Basahel S.
    Bajaba S.
    Abusurrah M.
    Laxmi Lydia E.
    Computer Systems Science and Engineering, 2023, 46 (02): : 1901 - 1916
  • [3] Deep attentive convolutional neural network for automatic grading of imbalanced diabetic retinopathy in retinal fundus images
    Li, Feng
    Tang, Shiqing
    Chen, Yuyang
    Zou, Haidong
    BIOMEDICAL OPTICS EXPRESS, 2022, 13 (11) : 5813 - 5835
  • [4] Analysis of retinal fundus images for grading of diabetic retinopathy severity
    M. H. Ahmad Fadzil
    Lila Iznita Izhar
    Hermawan Nugroho
    Hanung Adi Nugroho
    Medical & Biological Engineering & Computing, 2011, 49 : 693 - 700
  • [5] Analysis of retinal fundus images for grading of diabetic retinopathy severity
    Fadzil, M. H. Ahmad
    Izhar, Lila Iznita
    Nugroho, Hermawan
    Nugroho, Hanung Adi
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2011, 49 (06) : 693 - 700
  • [6] Diabetic retinopathy detection and grading of retinal fundus images using coyote optimization algorithm with deep learning
    Parthiban, K.
    Kamarasan, M.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (12) : 18947 - 18966
  • [7] Diabetic retinopathy detection and grading of retinal fundus images using coyote optimization algorithm with deep learning
    K. Parthiban
    M. Kamarasan
    Multimedia Tools and Applications, 2023, 82 : 18947 - 18966
  • [8] A Deep Learning Grading Classification of Diabetic Retinopathy on Retinal Fundus Images with Bio-inspired Optimization
    Ramesh, Radhakrishnan
    Sathiamoorthy, Selvarajan
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2023, 13 (04) : 11248 - 11252
  • [9] Screening for Diabetic Retinopathy through Retinal Colour Fundus Images using Convolutional Neural Networks
    Torrents-Barrena, Jordina
    Melendez, Jaime
    Valls, Aida
    Romero, Pere
    Puig, Domenec
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2015, 277 : 259 - 262
  • [10] Fully Convolutional Neural Networks for Automatic Extraction of Diabetic Retinopathy Features in Retinal Fundus Images
    Andersen, Jakob
    Juel, William Kristian
    Grauslund, Jakob
    Savarimuthu, Thiusius Rajeeth
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)