Few-body spin couplings and their implications for universal quantum computation

被引:12
|
作者
Woodworth, Ryan [1 ]
Mizel, Ari
Lidar, Daniel A.
机构
[1] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[2] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[3] Univ Toronto, Chem Phys Theory Grp, Toronto, ON M5S 3H6, Canada
[4] Univ Toronto, Ctr Quantum Informat & Quantum Control, Toronto, ON M5S 3H6, Canada
[5] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
[6] Univ So Calif, Dept Elect Engn Syst, Los Angeles, CA 90089 USA
关键词
D O I
10.1088/0953-8984/18/21/S02
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Electron spins in semiconductor quantum dots are promising candidates for the experimental realization of solid-state qubits. We analyse the dynamics of a system of three qubits arranged in a linear geometry and a system of four qubits arranged in a square geometry. Calculations are performed for several quantum dot confining potentials. In the three-qubit case, three-body effects are identified that have an important quantitative influence upon quantum computation. In the four-qubit case, the full Hamiltonian is found to include both three-body and four-body interactions that significantly influence the dynamics in physically relevant parameter regimes. We consider the implications of these results for the encoded universality paradigm applied to the four-electron qubit code; in particular, we consider what is required to circumvent the four-body effects in an encoded system ( four spins per encoded qubit) by the appropriate tuning of experimental parameters.
引用
收藏
页码:S721 / S744
页数:24
相关论文
共 50 条
  • [1] Universal Few-Body Binding
    Modugno, Giovanni
    SCIENCE, 2009, 326 (5960) : 1640 - 1641
  • [2] ON THE QUANTUM FEW-BODY PROBLEM
    ALZETTA, R
    PARISI, G
    SEMERARO, T
    NUCLEAR PHYSICS B, 1984, 235 (04) : 576 - 598
  • [3] Universal spectral correlations in interacting chaotic few-body quantum systems
    Fritzsch, Felix
    Kieler, Maximilian F. I.
    PHYSICAL REVIEW E, 2024, 109 (01)
  • [4] Universal few-body physics and cluster formation
    Greene, Chris H.
    Giannakeas, P.
    Perez-Rios, J.
    REVIEWS OF MODERN PHYSICS, 2017, 89 (03)
  • [5] Universal insights from few-body land
    Greene, Chris H.
    PHYSICS TODAY, 2010, 63 (03) : 40 - 45
  • [6] Solvable Few-Body Quantum Problems
    Bachkhaznadji, A.
    Lassaut, M.
    FEW-BODY SYSTEMS, 2015, 56 (01) : 1 - 17
  • [7] Universal few-body physics in a harmonic trap
    Toelle, Simon
    Hammer, Hans-Werner
    Metsch, Bernard Ch.
    COMPTES RENDUS PHYSIQUE, 2011, 12 (01) : 59 - 70
  • [8] Solvable Few-Body Quantum Problems
    A. Bachkhaznadji
    M. Lassaut
    Few-Body Systems, 2015, 56 : 1 - 17
  • [9] The Steepest Slope toward a Quantum Few-Body Solution: Gradient Variational Methods for the Quantum Few-Body Problem
    Recchia, Paolo
    Basu, Debabrota
    Gattobigio, Mario
    Miniatura, Christian
    Bressan, Stephane
    FEW-BODY SYSTEMS, 2024, 65 (04)
  • [10] The Spin Studies in Few-Body Systems at Nuclotron
    Ladygin, V. P.
    Dobrin, I.
    Fimushkin, V. V.
    Finogenov, D. A.
    Genchev, S. G.
    Gurchin, Yu. V.
    Ierusalimov, A. P.
    Isupov, A. Yu.
    Itoh, K.
    Janek, M.
    Karpechev, E. V.
    Karachuk, J. -T.
    Khabarov, S. V.
    Kawabata, T.
    Khrenov, A. N.
    Krasnov, V. A.
    Kurepin, A. B.
    Kurilkin, A. K.
    Kurilkin, P. K.
    Ladygina, N. B.
    Lipchinski, D.
    Livanov, A. N.
    Maeda, Y.
    Malakhov, A. I.
    Martinska, G.
    Piyadin, S. M.
    Popovichi, J.
    Prokofichev, A. N.
    Rapatsky, V. L.
    Reshetin, A. I.
    Reznikov, S. G.
    Rukoyatkin, P. A.
    Sakaguchi, S.
    Sakai, H.
    Sasamoto, Y.
    Sekiguchi, K.
    Skhomenko, Ya. G.
    Suda, K.
    Syschenko, V. V.
    Tarjanyiova, G.
    Terekhin, A. A.
    Uesaka, T.
    Urban, J.
    Vasiliev, T. A.
    Vnukov, I. E.
    Zamiatin, N. I.
    Zubarev, E. V.
    PROCEEDINGS OF THE 21ST INTERNATIONAL SYMPOSIUM ON SPIN PHYSICS (SPIN2014), 2016, 40