HYPERBOLIC FOUR-MANIFOLDS WITH ONE CUSP

被引:26
|
作者
Kolpakov, Alexander [1 ]
Martelli, Bruno [2 ]
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[2] Dipartimento Matemat Tonelli, I-56127 Pisa, Italy
基金
瑞士国家科学基金会;
关键词
3-MANIFOLDS; NUMBER;
D O I
10.1007/s00039-013-0247-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce an algorithm which transforms every four-dimensional cubulation into a cusped finite-volume hyperbolic four-manifold. Combinatorially distinct cubulations give rise to topologically distinct manifolds. Using this algorithm we construct the first examples of finite-volume hyperbolic four-manifolds with one cusp. More generally, we show that the number of k-cusped hyperbolic four-manifolds with volume a (c) 1/2 V grows like C (V ln V) for any fixed k. As a corollary, we deduce that the 3-torus bounds geometrically a hyperbolic manifold.
引用
收藏
页码:1903 / 1933
页数:31
相关论文
共 50 条