Water quality variation and source apportionment using multivariate statistical analysis

被引:2
|
作者
Goswami, Ankit Pratim [1 ]
Kalamdhad, Ajay S. [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Civil Engn, Gauhati, India
关键词
Entropy weighted water quality index; information entropy; principal component analysis; Pearson correlation matrix; water quality; GOMTI RIVER INDIA; GROUNDWATER QUALITY; LAND-USE; POLLUTION SOURCES; AREA; RUNOFF; INDEX;
D O I
10.1080/15275922.2022.2125112
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Rivers are the primary source of potable water and other residential uses. Since wastewater from the nearby industries and urban areas degrades the quality of the rivers, it is essential to monitor their water quality and quantity continuously. This study determines the pollution level in a river in accordance with drinking water standards. The entropy-weighted water quality index (EWQI) indicates the level of river pollution, and the principal component analysis (PCA) and Pearson correlation matrix were used to identify pollution sources. Twenty parameters were considered for the study, which includes alkalinity, biochemical oxygen demand (BOD), calcium (Ca+2), cadmium (Cd), chloride (Cl-), copper (Cu), dissolved oxygen (DO), electrical conductivity (EC), fluoride (F-), hardness, iron (Fe), lead (Pb), magnesium (Mg+2), manganese (Mn), nitrate (NO3-), pH, potassium (K+), sodium (Na+), sulphate (SO42-), total dissolved solids (TDS) and zinc (Zn). The EWQI varied between 68.93 (good) to 259.91 (extremely poor). Post-monsoon EWQI values are higher due to the fact that monsoon-filled sewers continue to drain into the river even after the rainy or monsoon season has ended. Winter, pre-monsoon, and monsoon all produced five components (PCs) that explained 79%, 74%, and 80% of the overall variance, respectively and post-monsoon produced 6 PCs that explained 83% of the overall variance. PCA and Pearson correlation matrix indicate pollution from runoff sources during the pre-monsoon and monsoon season along with the pollution sources existing in the monsoon and post-monsoon season, domestic and metal sources.
引用
收藏
页码:205 / 227
页数:23
相关论文
共 50 条
  • [1] Assessment of water quality and source apportionment in a typical urban river in China using multivariate statistical methods
    Huang, Jingshui
    Xie, Ruyi
    Yin, Hailong
    Zhou, Qi
    WATER SCIENCE AND TECHNOLOGY-WATER SUPPLY, 2018, 18 (05): : 1841 - 1851
  • [2] Spatial variation and source apportionment of surface water pollution in the Tuo River, China, using multivariate statistical techniques
    Fu, Dong
    Wu, Xuefei
    Chen, Yongcan
    Yi, Zhenyan
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2020, 192 (12)
  • [3] Spatial variation and source apportionment of surface water pollution in the Tuo River, China, using multivariate statistical techniques
    Dong Fu
    Xuefei Wu
    Yongcan Chen
    Zhenyan Yi
    Environmental Monitoring and Assessment, 2020, 192
  • [4] Assessment of water quality and apportionment of pollution sources of an urban lake using multivariate statistical analysis
    Rahman, Kalimur
    Barua, Saurav
    Imran, H. M.
    CLEANER ENGINEERING AND TECHNOLOGY, 2021, 5
  • [5] Source apportionment for contaminated soils using multivariate statistical methods
    Parra, Sonnia
    Bravo, Manuel A.
    Quiroz, Waldo
    Moreno, Teresa
    Karanasiou, Angeliki
    Font, Oriol
    Vidal, Victor
    Cereceda-Balic, Francisco
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2014, 138 : 127 - 132
  • [6] Source apportionment for spatial variation of surface water quality using chemometric techniques
    Singh, Kunwar Raghvendra
    Kalamdhadb, Ajay S.
    Kumar, Bimlesh
    ENVIRONMENTAL FORENSICS, 2022, 23 (5-6) : 557 - 567
  • [7] Water quality assessment and pollution source apportionment using multivariate statistical techniques: a case study of the Laixi River Basin, China
    Xiao, Jie
    Gao, Dongdong
    Zhang, Han
    Shi, Hongle
    Chen, Qiang
    Li, Hongfei
    Ren, Xingnian
    Chen, Qingsong
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (02)
  • [8] Water quality assessment and pollution source apportionment using multivariate statistical techniques: a case study of the Laixi River Basin, China
    Jie Xiao
    Dongdong Gao
    Han Zhang
    Hongle Shi
    Qiang Chen
    Hongfei Li
    Xingnian Ren
    Qingsong Chen
    Environmental Monitoring and Assessment, 2023, 195
  • [9] Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques
    Huang, Fang
    Wang, Xiaoquan
    Lou, Liping
    Zhou, Zhiqing
    Wu, Jiaping
    WATER RESEARCH, 2010, 44 (05) : 1562 - 1572
  • [10] Temporal Seasonal Variations and Source Apportionment of Water Pollution in Melaka River Basin using Multivariate Statistical Techniques
    Hua, Ang Kean
    Gani, Paran
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2023, 32 (01): : 79 - 97