Almost Global Existence for the Fractional Schrodinger Equations

被引:2
|
作者
Mi, Lufang [1 ]
Cong, Hongzi [2 ]
机构
[1] Binzhou Univ, Inst Aeronaut Engn & Technol, Coll Sci, Binzhou 256600, Shandong, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R China
关键词
Long time stability; Tame property; Hamiltonian partial differential equation; Stability; KLEIN-GORDON EQUATIONS; LONG-TIME EXISTENCE; BIRKHOFF NORMAL-FORM; PLANE-WAVE SOLUTIONS; SOBOLEV STABILITY; PERIODIC SOLUTIONS; THEOREM; TORI;
D O I
10.1007/s10884-019-09783-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the time of existence of the solutions of the following nonlinear Schrodinger equation (NLS) iu(t) = (-Delta + m)(s)u - vertical bar u vertical bar(2)u on the finite x-interval [0, pi] with Dirichlet boundary conditions u(t, 0) = 0 = u(t, pi), -infinity < t < +infinity, where (-Delta + m)(s) stands for the spectrally defined fractional Laplacian with 0 < s < 1/2. We prove an almost global existence result for the above fractional Schrodinger equation, which generalizes the result in Bambusi and Sire (Dyn PDE 10(2):171-176, 2013) from s > 1/2 to 0 < s < 1/2.
引用
收藏
页码:1553 / 1575
页数:23
相关论文
共 50 条