Magnetic dipole discharges. II. Cathode and anode spot discharges and probe diagnostics

被引:6
|
作者
Stenzel, R. L. [1 ]
Urrutia, J. M. [1 ]
Ionita, C. [2 ]
Schrittwieser, R. [2 ]
机构
[1] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[2] Univ Innsbruck, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
D O I
10.1063/1.4817015
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The high current regime of a magnetron-type discharge has been investigated. The discharge uses a permanent magnet as a cold cathode which emits secondary electrons while the chamber wall or a grounded electrode serves as the anode. As the discharge voltage is increased, the magnet develops cathode spots, which are short duration arcs that provide copious electrons to increase the discharge current dramatically. Short (1 mu s), high current (200 A) and high voltage (750 V) discharge pulses are produced in a relaxation instability between the plasma and a charging capacitor. Spots are also observed on a negatively biased plane Langmuir probe. The probe current pulses are as large as those on the magnet, implying that the high discharge current does not depend on the cathode surface area but on the properties of the spots. The fast current pulses produce large inductive voltages, which can reverse the electrical polarity of the magnet and temporarily operate it as an anode. The discharge current may also oscillate at the frequency determined by the charging capacitor and the discharge circuit inductance. Each half cycle of high-current current pulses exhibits a fast (similar or equal to 10 ns) current rise when a spot is formed. It induces high frequency (10-100 MHz) transients and ringing oscillations in probes and current circuits. Most probes behave like unmatched antennas for the electromagnetic pulses of spot discharges. Examples are shown to distinguish the source of oscillations and some rf characteristics of Langmuir probes. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] On the question of the stability of gas discharges. II.
    Dallenbach, W
    PHYSIKALISCHE ZEITSCHRIFT, 1926, 27 : 448 - 452
  • [2] Magnetic dipole discharges. III. Instabilities
    Stenzel, R. L.
    Urrutia, J. M.
    Ionita, C.
    Schrittwieser, R.
    PHYSICS OF PLASMAS, 2013, 20 (08)
  • [3] Magnetic dipole discharges. I. Basic properties
    Stenzel, R. L.
    Urrutia, J. M.
    Teodorescu-Soare, C. T.
    Ionita, C.
    Schrittwieser, R.
    PHYSICS OF PLASMAS, 2013, 20 (08)
  • [4] Concerning oscillating discharges. II. Chapter: Experimental results.
    Battelli, A
    Magri, L
    PHYSIKALISCHE ZEITSCHRIFT, 1902, 4 : 181 - 189
  • [5] Probe diagnostics of waveguided discharges in an external magnetic field
    Djermanova, N
    Kiss'ovski, Z
    Kolev, S
    Schlüter, H
    Shivarova, A
    Tarnev, K
    VACUUM, 2002, 69 (1-3) : 147 - 152
  • [6] Ion distribution measurements to probe target and plasma processes in electronegative magnetron discharges. II. Positive ions
    Welzel, Th.
    Naumov, S.
    Ellmer, K.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
  • [7] Regarding construction of Gas discharges. II
    Raether, H.
    ZEITSCHRIFT FUR PHYSIK, 1941, 117 (7-8): : 524 - 542
  • [8] Revisiting particle dynamics in HiPIMS discharges. II. Plasma pulse effects
    Hnilica, Jaroslav
    Klein, Peter
    Vasina, Petr
    Snyders, Rony
    Britun, Nikolay
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (04)
  • [9] CATHODE DEGRADATION AND EROSION IN HIGH PRESSURE ARC DISCHARGES.
    Hardy, Terry L.
    Nakanishi, Shigeo
    NASA Technical Memorandum, 1984,
  • [10] On the theory of non-stationary discharges. II
    Weizel, W.
    Rompe, R.
    Schulz, P.
    ZEITSCHRIFT FUR PHYSIK, 1942, 119 (3-4): : 237 - 244