Transformed low-rank ANOVA models for high-dimensional variable selection

被引:9
|
作者
Jung, Yoonsuh [1 ]
Zhang, Hong [2 ]
Hu, Jianhua [3 ]
机构
[1] Korea Univ, Dept Stat, Seoul, South Korea
[2] Fudan Univ, Inst Biostat, Shanghai, Peoples R China
[3] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
基金
美国国家卫生研究院; 新加坡国家研究基金会;
关键词
ANOVA; BIC; diverging number of parameters; high-dimensional variables; low rank; variable selection; CERVICAL-CANCER SUSCEPTIBILITY; REGRESSION; LASSO; GENE; CLASSIFICATION; POLYMORPHISM; ASSOCIATION; XRCC1; REGULARIZATION; LIKELIHOOD;
D O I
10.1177/0962280217753726
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
High-dimensional data are often encountered in biomedical, environmental, and other studies. For example, in biomedical studies that involve high-throughput omic data, an important problem is to search for genetic variables that are predictive of a particular phenotype. A conventional solution is to characterize such relationships through regression models in which a phenotype is treated as the response variable and the variables are treated as covariates; this approach becomes particularly challenging when the number of variables exceeds the number of samples. We propose a general framework for expressing the transformed mean of high-dimensional variables in an exponential distribution family via ANOVA models in which a low-rank interaction space captures the association between the phenotype and the variables. This alternative method transforms the variable selection problem into a well-posed problem with the number of observations larger than the number of variables. In addition, we propose a model selection criterion for the new model framework with a diverging number of parameters, and establish the consistency of the selection criterion. We demonstrate the appealing performance of the proposed method in terms of prediction and detection accuracy through simulations and real data analyses.
引用
收藏
页码:1230 / 1246
页数:17
相关论文
共 50 条
  • [1] Reconstruction of a high-dimensional low-rank matrix
    Yata, Kazuyoshi
    Aoshima, Makoto
    ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 895 - 917
  • [2] ESTIMATION OF HIGH-DIMENSIONAL LOW-RANK MATRICES
    Rohde, Angelika
    Tsybakov, Alexandre B.
    ANNALS OF STATISTICS, 2011, 39 (02): : 887 - 930
  • [3] High-dimensional VAR with low-rank transition
    Alquier, Pierre
    Bertin, Karine
    Doukhan, Paul
    Garnier, Remy
    STATISTICS AND COMPUTING, 2020, 30 (04) : 1139 - 1153
  • [4] High-dimensional VAR with low-rank transition
    Pierre Alquier
    Karine Bertin
    Paul Doukhan
    Rémy Garnier
    Statistics and Computing, 2020, 30 : 1139 - 1153
  • [5] CHANGE DETECTION IN THE COVARIANCE STRUCTURE OF HIGH-DIMENSIONAL GAUSSIAN LOW-RANK MODELS
    Beisson, R.
    Vallet, P.
    Giremus, A.
    Ginolhac, G.
    2021 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2021, : 421 - 425
  • [6] Reliability analysis of high-dimensional models using low-rank tensor approximations
    Konakli, Katerina
    Sudret, Bruno
    PROBABILISTIC ENGINEERING MECHANICS, 2016, 46 : 18 - 36
  • [7] Low-rank Riemannian eigensolver for high-dimensional Hamiltonians
    Rakhuba, Maxim
    Novikov, Alexander
    Oseledets, Ivan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 396 : 718 - 737
  • [8] Bayesian variable selection for high-dimensional rank data
    Cui, Can
    Singh, Susheela P.
    Staicu, Ana-Maria
    Reich, Brian J.
    ENVIRONMETRICS, 2021, 32 (07)
  • [9] Variable selection and estimation in high-dimensional models
    Horowitz, Joel L.
    CANADIAN JOURNAL OF ECONOMICS-REVUE CANADIENNE D ECONOMIQUE, 2015, 48 (02): : 389 - 407
  • [10] A New Statistic for Testing Covariance Equality in High-Dimensional Gaussian Low-Rank Models
    Beisson, Remi
    Vallet, Pascal
    Giremus, Audrey
    Ginolhac, Guillaume
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 1797 - 1812